1
|
Jin Z, Liu M, Xie B, Wen W, Yan Y, Zhang Y, Li H, Shen Z, Jiang L, Gao M, Chen K, Zhao F. Generation of a medicine food homology formula and its likely mechanism in treatment of microvascular angina. Front Pharmacol 2024; 15:1404874. [PMID: 39281275 PMCID: PMC11401076 DOI: 10.3389/fphar.2024.1404874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Microvascular angina (MVA) is the most common cause of cardiac ischemic chest pain in patients without obstructive coronary artery disease (CAD) and lacks of effective treatment means. Medicine food homology (MFH) involves substances with both nutritional and medicinal qualities that have the potential to improve MVA symptoms as medicines, dietary supplements. However, research on MFH formula (MFHF) for MVA is not available. The study aims to generate a core MFHF for MVA through data mining and offer scientific backing for the utilization of edible medications in the prevention and alleviation of MVA. 11 databases were utilized to construct a database of MFH drugs, and the MFHF was generated through frequency analysis, association rule analysis, and clustering analysis. The composition of the formula is Codonopsis Radix, Astragali Radix, Platycodonis Radix, Persicae Semen, Glycyrrhizae Radix Et Rhizoma, Angelicae Sinensis Radix, and Allii Macrostemonis Bulbus. Through network pharmacology and molecular docking, we identified five major active components of MFHF: Adenosine, Nonanoic Acid, Lauric Acid, Caprylic Acid, and Enanthic Acid, along with nine core targets (NFKB1, ALB, AKT1, ACTB, TNF, IL6, ESR1, CASP3, and PTGS) for the improvement of MVA. These 5 active components have various biological activities, such as reducing oxidative stress, anti-inflammation, analgesia effect, inhibiting platelet aggregation, vasodilatation, vascular endothelial protection, and cardio-protection. GO and KEGG enrichment analyses revealed that MFHF mainly acted on the response to xenobiotic stimulus, integrative component of the plasma membrane, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding, pathways in cancer, lipid and atherosclerosis, human cytomegalovirus infection, and the PI3K-Akt signaling pathway, which are the main pathogenesis of MVA.
Collapse
Affiliation(s)
- Zhidie Jin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beili Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yangfang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haohao Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - ZhengYu Shen
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Lulian Jiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengjie Gao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Luo Y, Wang Z, Zhao X, Xing J, Chen Z, Zhao W, Long X, Zhang Y, Shao Y. Combining the Vaginal Microbiome and Serum Metabolome to Screen for Potential Biomarkers of Early Pregnancy in Cows. Metabolites 2024; 14:469. [PMID: 39330476 PMCID: PMC11434538 DOI: 10.3390/metabo14090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Early pregnancy diagnostic techniques are of significant importance in livestock farming, particularly in dairy farming. This study aimed to screen artificially inseminated cows for potential biomarkers at day 21 of pregnancy using microbiota-metabolomics analysis. The microbiome analysis revealed significant changes (p < 0.05) in the composition and abundance of the vaginal microbiota in cows after pregnancy. Notably, there was an increase in the abundance of [Eubacterium]_hallii_group (p < 0.05) associated with the production of short-chain fatty acids in the pregnant group compared with the non-pregnant group. Furthermore, significant alterations were observed in the serum metabolome, with notable changes in the concentrations of prolyl-hydroxyproline (Pro-Hyp) (p < 0.01) and bonactin (p < 0.01). The majority of differential metabolites clustered within the pathways of amino acid metabolism and lipid metabolism, with lipid metabolism exhibiting a higher proportion and playing a pivotal role in early pregnancy. An enzyme-linked immunosorbent assay was employed to quantify three key metabolites of the arachidonic acid pathway. The results demonstrated significant decreases in serum concentrations of leukotriene B4 (LTB4) (p < 0.05) and prostaglandin F2α (PGF2α) (p < 0.01) and no significant changes in arachidonic acid (AA) (NS) concentrations after 21 days of gestation in cows. Spearman's correlation analysis was utilized to investigate the interrelationship between the vaginal microbiota and serum metabolites. In conclusion, the present study demonstrated that biomaterials such as bonactin, Pro-hyp, LTB4, PGF2α in serum metabolites and [Eubacterium]_hallii_group in the vaginal flora of cows could be utilized as potential biomarkers for 21 days of gestation in cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongbin Shao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (Y.L.); (Z.W.); (X.Z.); (J.X.); (Z.C.); (W.Z.); (X.L.); (Y.Z.)
| |
Collapse
|
3
|
Liu X, Chen X, Wang C, Song J, Xu J, Gao Z, Huang Y, Suo H. Mechanisms of probiotic modulation of ovarian sex hormone production and metabolism: a review. Food Funct 2024; 15:2860-2878. [PMID: 38433710 DOI: 10.1039/d3fo04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sex hormones play a pivotal role in the growth and development of the skeletal, neurological, and reproductive systems. In women, the dysregulation of sex hormones can result in various health complications such as acne, hirsutism, and irregular menstruation. One of the most prevalent diseases associated with excess androgens is polycystic ovary syndrome with a hyperandrogenic phenotype. Probiotics have shown the potential to enhance the secretion of ovarian sex hormones. However, the underlying mechanism of action remains unclear. Furthermore, comprehensive reviews detailing how probiotics modulate ovarian sex hormones are scarce. This review seeks to shed light on the potential mechanisms through which probiotics influence the production of ovarian sex hormones. The role of probiotics across various biological axes, including the gut-ovarian, gut-brain-ovarian, gut-liver-ovarian, gut-pancreas-ovarian, and gut-fat-ovarian axes, with a focus on the direct impact of probiotics on the ovaries via the gut and their effects on brain gonadotropins is discussed. It is also proposed herein that probiotics can significantly influence the onset, progression, and complications of ovarian sex hormone abnormalities. In addition, this review provides a theoretical basis for the therapeutic application of probiotics in managing sex hormone-related health conditions.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, P. R. China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Wang X, Huang J, Li H, Li Y, Cai S, Xue B, Zhu Z, Zeng X, Zeng X. Establishment and application of high throughput screening cell model for nutrient regulation of embryonic development. J Nutr Biochem 2024; 123:109502. [PMID: 37890711 DOI: 10.1016/j.jnutbio.2023.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Embryo development exerts far-reaching influence on pregnancy outcome, postnatal development and lifelong health. Thereafter, to select functional nutrients to improve embryo development is of great importance. Herein, a stable porcine trophectoderm cell line expressing a luciferase reporter gene driven by a 1,009 bp PCNA gene promoter was constructed through lentiviral transduction and G418 selection. A high throughput screening assay was subsequently developed using the stable reporter cell line to screen a library of 225 nutrients. Seven nutrients with a minimum Z-score of 2.0 were initially identified to be capable of enhancing embryonic development. Among these nutrients, resveratrol, apigenin, and retinol palmitate were furtherly confirmed the beneficial effects for embryo development. Resveratrol significantly increased the expression of key genes involved in pTr cell proliferation and the number of S-phase cells. Resveratrol was furtherly confirmed to promote the expression of key genes in trophoblast development and increase embryo adhesion rate in vitro. Similarly, dietary 0.05% resveratrol supplementation significantly increased the number of embryo attachment and serum level of P4 and E2 in rats. Resveratrol could also improve maternal antioxidant levels and reduce intracellular ROS. Collectively, a high throughput screening cell model for nutrient regulation of embryonic development was established, which can be used to highly effectively select the potential candidates for embryo development. These findings have great implications for exploring optimal functional nutrients to improve embryo development, ultimately beneficial for pregnancy outcome, offspring postnatal development and lifelong health for human beings and mammalian animals.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Huan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Yanlong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Gethöffer F, Keuling O, Maistrelli C, Ludwig T, Siebert U. Heavy Youngsters-Habitat and Climate Factors Lead to a Significant Increase in Body Weight of Wild Boar Females. Animals (Basel) 2023; 13:ani13050898. [PMID: 36899755 PMCID: PMC10000140 DOI: 10.3390/ani13050898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
As one of the most abundant game species in Europe, European wild boar (Sus scrofa) populations prove highly adaptable to cultivated landscapes. The ongoing process of climate change and the high agricultural yields seem to further optimize the living conditions for this species. In long-term reproduction monitoring, we collected data on the body weight of wild boar females. Over an 18-year period, the body weight of wild boar females increased continuously, then stopped and decreased. It was possible to detect differences between the body weights of animals from forest and agricultural areas. For these areas, differences in body weight development also led to a significant distinction in the onset of puberty. We conclude that, even in a highly cultivated landscape, forested areas provide habitat characteristics that may strongly influence reproduction. Second, with dominant agricultural areas in Germany, wild boar reproduction has been favored in recent decades.
Collapse
|