1
|
Pimpa J, Authaida S, Boonkum W, Rerkyusuke S, Janta C, Chankitisakul V. Unveiling the Potential of Aloe vera Gel Supplementation in a Cooling Extender: A Breakthrough in Enhancing Rooster Sperm Quality and Fertility Ability. Animals (Basel) 2024; 14:2290. [PMID: 39199824 PMCID: PMC11350648 DOI: 10.3390/ani14162290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The cooling of semen storage at 5 °C from a Thai native rooster (Pradu Hang Dum), supplemented with herbs possessing antioxidant properties, provided limited research. This study was conducted to evaluate the efficiency of Aloe vera (AV) gel supplementation at various levels on the quality of cooled semen and subsequent fertility after artificial insemination. Sixty-four chickens had semen pooled, diluted, and supplemented with different levels of AV gel (0% as control, 0.25%, 0.50%, 1.0%, 2.5%, 5.0%, 10%, and 20%), and then stored for 72 h. In Experiment 1, semen quality, malondialdehyde (MDA) levels, and pH values were assessed at 0, 24, 48, and 72 h after storage. Experiment 2 assessed fertility potential using the most effective cooled storage semen from Experiment 1. Results showed a decrease in semen quality with prolonged storage time (p < 0.001). The highest semen quality was observed in the group supplemented with 1.0% AV gel (p < 0.001), whereas the lowest was noted in the 20% AV gel group (p < 0.001). Furthermore, the 1.0% AV gel group exhibited the highest semen quality at 24, 48, and 72 h of storage. The evaluation of fertility and hatchability rates revealed a statistically significant improvement in fertility potential (p < 0.05) in the group supplemented with 1.0% AV gel. In summary, this study represents the first investigation of stored Thai native rooster semen using a semen extender supplemented with Aloe vera gel at 5 °C, demonstrating its efficacy for storage up to 72 h. The addition of 1% AV gel was recommended as an antioxidant supplementation during the semen storage process at 5 °C to enhance semen quality and fertility rates.
Collapse
Affiliation(s)
- Jutarat Pimpa
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Rerkyusuke
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Chalinee Janta
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.P.); (S.A.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
3
|
Yi X, Qiu Y, Tang X, Lei Y, Pan Y, Raza SHA, Althobaiti NA, Albalawi AE, Al Abdulmonem W, Makhlof RTM, Alsaad MA, Zhang Y, Sun X. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod Sci 2024; 31:1958-1972. [PMID: 38267808 DOI: 10.1007/s43032-024-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yichen Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah, 19257, Al Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Mohammad A Alsaad
- College of Medicine, Umm AL Qura University, 21955, Makkah, Saudi Arabia
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Aitken RJ. Male reproductive ageing: a radical road to ruin. Hum Reprod 2023; 38:1861-1871. [PMID: 37568254 PMCID: PMC10546083 DOI: 10.1093/humrep/dead157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
5
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|