1
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Mottarlini F, Targa G, Rizzi B, Fumagalli F, Caffino L. Developmental activity-based anorexia alters hippocampal non-genomic stress response and induces structural instability and spatial memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111065. [PMID: 38901757 DOI: 10.1016/j.pnpbp.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
3
|
Voelz C, Trinh S, Käver L, Tran MT, Beyer C, Seitz J. MiRNA research-The potential for understanding the multiple facets of anorexia nervosa. Int J Eat Disord 2024; 57:1489-1494. [PMID: 38545802 DOI: 10.1002/eat.24204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 07/23/2024]
Abstract
Anorexia nervosa (AN) has a multifaceted and complex pathology, yet major gaps remain in our understanding of factors involved in AN pathology. MicroRNAs (miRNAs) play a regulatory role in translating genes into proteins and help understand and treat diseases. An extensive literature review on miRNAs with AN and comorbidities has uncovered a significant lack in miRNA research. To demonstrate the importance of understanding miRNA deregulation, we surveyed the literature on depression and obesity providing examples of relevant miRNAs. For AN, no miRNA sequencing or array studies have been found, unlike other psychiatric disorders. For depression and obesity, screenings and mechanistic studies were conducted, leading to clinical studies to improve understanding of their regulatory influences. MiRNAs are promising targets for studying AN due to their role as signaling molecules, involvement in psychiatric-metabolic axes, and potential as biomarkers. These characteristics offer valuable insights into the disease's etiology and potential new treatment options. The first miRNA-based treatment for rare metabolic disorders has been approved by the FDA and it is expected that these advancements will increase in the next decade. MiRNA research in AN is essential to examine its role in the development, manifestation, and progression of the disease. PUBLIC SIGNIFICANCE: The current understanding of the development and treatment of AN is insufficient. miRNAs are short regulatory sequences that influence the translation of genes into proteins. They are the subject of research in various diseases, including both metabolic and psychiatric disorders. Studying miRNAs in AN may elucidate their causal and regulatory role, uncover potential biomarkers, and allow for future targeted treatments.
Collapse
Affiliation(s)
- Clara Voelz
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Stefanie Trinh
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Larissa Käver
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Mai-Tam Tran
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- RWTH Aachen University Hospital, Institute of Neuroanatomy, Aachen, Germany
- RWTH Aachen University, JARA-Brain, Aachen, Germany
| | - Jochen Seitz
- RWTH Aachen University Hospital, Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Whitehead SC, Sahai SY, Stonemetz J, Yapici N. Exploration-exploitation trade-off is regulated by metabolic state and taste value in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594045. [PMID: 38798663 PMCID: PMC11118379 DOI: 10.1101/2024.05.13.594045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Similar to other animals, the fly, Drosophila melanogaster, changes its foraging strategy from exploration to exploitation upon encountering a nutrient-rich food source. However, the impact of metabolic state or taste/nutrient value on exploration vs. exploitation decisions in flies is poorly understood. Here, we developed a one-source foraging assay that uses automated video tracking coupled with high-resolution measurements of food ingestion to investigate the behavioral variables flies use when foraging for food with different taste/caloric values and when in different metabolic states. We found that flies alter their foraging and ingestive behaviors based on their hunger state and the concentration of the sucrose solution. Interestingly, sugar-blind flies did not transition from exploration to exploitation upon finding a high-concentration sucrose solution, suggesting that taste sensory input, as opposed to post-ingestive nutrient feedback, plays a crucial role in determining the foraging decisions of flies. Using a Generalized Linear Model (GLM), we showed that hunger state and sugar volume ingested, but not the nutrient or taste value of the food, influence flies' radial distance to the food source, a strong indicator of exploitation. Our behavioral paradigm and theoretical framework offer a promising avenue for investigating the neural mechanisms underlying state and value-based foraging decisions in flies, setting the stage for systematically identifying the neuronal circuits that drive these behaviors.
Collapse
Affiliation(s)
- Samuel C. Whitehead
- Department of Physics, Cornell University, Ithaca, NY,14853, USA
- Current address: California Institute of Technology, Pasadena, CA, USA
| | - Saumya Y. Sahai
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Current address: Amazon.com LLC, USA
| | - Jamie Stonemetz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Current address: Department of Biology, Brandeis University, Waltham, MA, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Schuster K, Staffeld A, Zimmermann A, Böge N, Lang S, Kuhla A, Frintrop L. Starvation in Mice Induces Liver Damage Associated with Autophagy. Nutrients 2024; 16:1191. [PMID: 38674881 PMCID: PMC11053507 DOI: 10.3390/nu16081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Anorexia nervosa (AN) induces organ dysfunction caused by malnutrition, including liver damage leading to a rise in transaminases due to hepatocyte damage. The underlying pathophysiology of starvation-induced liver damage is poorly understood. We investigate the effect of a 25% body weight reduction on murine livers in a mouse model and examine possible underlying mechanisms of starvation-induced liver damage. Female mice received a restricted amount of food with access to running wheels until a 25% weight reduction was achieved. This weight reduction was maintained for two weeks to mimic chronic starvation. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured spectrophotometrically. Liver fat content was analyzed using an Oil Red O stain, and liver glycogen was determined using a Periodic acid-Schiff (PAS) stain. Immunohistochemical stains were used to investigate macrophages, proliferation, apoptosis, and autophagy. Starvation led to an elevation of AST and ALT values, a decreased amount of liver fat, and reduced glycogen deposits. The density of F4/80+ macrophage numbers as well as proliferating KI67+ cells were decreased by starvation, while apoptosis was not altered. This was paralleled by an increase in autophagy-related protein staining. Increased transaminase values suggest the presence of liver damage in the examined livers of starved mice. The observed starvation-induced liver damage may be attributed to increased autophagy. Whether other mechanisms play an additional role in starvation-induced liver damage remains to be investigated.
Collapse
Affiliation(s)
- Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| |
Collapse
|
6
|
Salaün C, Courvalet M, Rousseau L, Cailleux K, Breton J, Bôle-Feysot C, Guérin C, Huré M, Goichon A, do Rego JC, Déchelotte P, Ribet D, Achamrah N, Coëffier M. Sex-dependent circadian alterations of both central and peripheral clock genes expression and gut-microbiota composition during activity-based anorexia in mice. Biol Sex Differ 2024; 15:6. [PMID: 38217033 PMCID: PMC10785476 DOI: 10.1186/s13293-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Patients with anorexia nervosa (AN) often present sleep disorders and circadian hormonal dysregulation. The role of the microbiota-gut-brain axis in the regulation of feeding behavior has emerged during the last decades but its relationships with the circadian rhythm remains poorly documented. Thus, we aimed to characterize the circadian clock genes expression in peripheral and central tissues in the activity-based anorexia mouse model (ABA), as well as the dynamics of the gut-microbiota composition. METHODS From day 1 to day 17, male and female C57Bl/6 mice were submitted or not to the ABA protocol (ABA and control (CT) groups), which combines a progressive limited access to food and a free access to a running wheel. At day 17, fasted CT and ABA mice were euthanized after either resting (EoR) or activity (EoA) phase (n = 10-12 per group). Circadian clock genes expression was assessed by RT-qPCR on peripheral (liver, colon and ileum) and central (hypothalamic suprachiasmatic nucleus or SCN) tissues. Cecal bacterial taxa abundances were evaluated by qPCR. Data were compared by two-way ANOVA followed by post-tests. RESULTS ABA mice exhibited a lower food intake, a body weight loss and an increase of diurnal physical activity that differ according with the sex. Interestingly, in the SCN, only ABA female mice exhibited altered circadian clock genes expression (Bmal1, Per1, Per2, Cry1, Cry2). In the intestinal tract, modification of clock genes expression was also more marked in females compared to males. For instance, in the ileum, female mice showed alteration of Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Rev-erbα mRNA levels, while only Per2 and Cry1 mRNAs were affected by ABA model in males. By contrast, in the liver, clock genes expression was more markedly affected in males compared to females in response to ABA. Finally, circadian variations of gut-bacteria abundances were observed in both male and female mice and sex-dependent alteration were observed in response to the ABA model. CONCLUSIONS This study shows that alteration of circadian clock genes expression at both peripheral and central levels occurs in response to the ABA model. In addition, our data underline that circadian variations of the gut-microbiota composition are sex-dependent.
Collapse
Affiliation(s)
- Colin Salaün
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marine Courvalet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Léna Rousseau
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Kévin Cailleux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jonathan Breton
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Marion Huré
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Jean-Claude do Rego
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Univ Rouen Normandie, Inserm, CNRS, Normandie Univ, HERACLES US 51 UAR 2026, Behavioural Analysis Platform SCAC, 76000, Rouen, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Najate Achamrah
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Department of Nutrition, CHU Rouen, 76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition Inflammation and Microbiota Gut Brain Axis, UFR Santé, 22 Boulevard Gambetta, 76183, Rouen Cedex, France.
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
- Department of Nutrition, CHU Rouen, 76000, Rouen, France.
| |
Collapse
|
7
|
Zimmermann A, Böge N, Schuster K, Staffeld A, Lang S, Gill S, Rupprecht H, Frintrop L. Glial cell changes in the corpus callosum in chronically-starved mice. J Eat Disord 2023; 11:227. [PMID: 38111061 PMCID: PMC10726510 DOI: 10.1186/s40337-023-00948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Anorexia nervosa (AN) is characterized by emaciation, hyperactivity, and amenorrhea. Imaging studies in AN patients have revealed reductions in grey and white matter volume, which correlate with the severity of neuropsychological deficits. However, the cellular basis for the observed brain atrophy is poorly understood. Although distinct hypothalamic centers, including the arcuate nucleus (ARC) are critically involved in regulating feeding behavior, little is known about potential hypothalamic modifications in this disorder. Since glia e.g. astrocytes and microglia influence neuronal circuits, we investigated the glial changes underlying pathophysiology of starvation in the corpus callosum (CC) and hypothalamus. Female mice were given a limited amount of food once a day and had unlimited access to a running wheel until a 20% weight reduction was achieved (acute starvation). This weight reduction was maintained for two weeks to mimic chronic starvation. Immunohistochemistry was used to quantify the density of astrocytes, microglia, oligodendrocytes, and the staining intensity of neuropeptide Y (NPY), a potent orexigenic peptide. Chronic starvation induced a decreased density of OLIG2+ oligodendrocytes, GFAP+ astrocytes, and IBA1+ microglia in the CC. However, the densities of glial cells remained unchanged in the ARC following starvation. Additionally, the staining intensity of NPY increased after both acute and chronic starvation, indicating an increased orexigenic signaling. Chronic starvation induced glial cell changes in the CC in a mouse model of AN suggesting that glia pathophysiology may play a role in the disease.
Collapse
Affiliation(s)
- Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Sadaf Gill
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Hanna Rupprecht
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany.
| |
Collapse
|
8
|
Staffeld A, Gill S, Zimmermann A, Böge N, Schuster K, Lang S, Kipp M, Palme R, Frintrop L. Establishment of a Murine Chronic Anorexia Nervosa Model. Cells 2023; 12:1710. [PMID: 37443744 PMCID: PMC10340390 DOI: 10.3390/cells12131710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Anorexia nervosa (AN) is associated with hyperactivity, amenorrhea, and brain atrophy. The underlying pathophysiology is mostly unknown, and new targets for therapeutic interventions are needed. This study aimed to systematically establish a murine AN model with the parameter extent of starvation, animal age, and length of starvation for functional studies. The activity-based anorexia (ABA) model combines food restriction with running wheel access. Early adolescent and adolescent mice received 40% of their baseline food intake until a 20% or 25% weight reduction was reached (acute starvation). To mimic chronic starvation, body weight loss was maintained for another two weeks. Running activity was examined using wheel sensors, while amenorrhea was investigated by analysis of vaginal smears. Brain sections were used to analyze cerebral cortex volumes. Acute starvation did not lead to either AN-related symptoms, whereas chronic starvation led to hyperactivity and amenorrhea except in the adolescent cohort with 20% weight reduction. Only ABA mice with 25% weight reduction revealed a cortex volume reduction. The optimal parameters to mirror AN-related symptoms included a 25% weight reduction, early adolescent or adolescent mice, and chronic starvation. The ABA model enables functional analysis of the impact of chronic AN on the underlying hormonal, behavioral, and brain pathophysiology.
Collapse
Affiliation(s)
- Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sadaf Gill
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
9
|
Trinh S, Kogel V, Kneisel L, Müller-Limberger E, Herpertz-Dahlmann B, Beyer C, Seitz J. Gut Microbiota and Brain Alterations after Refeeding in a Translational Anorexia Nervosa Rat Model. Int J Mol Sci 2023; 24:ijms24119496. [PMID: 37298445 DOI: 10.3390/ijms24119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota composition is causally involved in the regulation of body weight. Through the gut-brain axis, microbiota play a role in psychiatric disorders including anorexia nervosa (AN). Previously, we showed microbiome changes to be associated with brain volume and astrocyte reductions after chronic starvation in an AN animal model. Here, we analyzed whether these alterations are reversible after refeeding. The activity-based anorexia (ABA) model is a well-established animal model that mimics several symptoms of AN. Fecal samples and the brain were analyzed. Like previous results, significant alterations in the microbiome were observed after starvation. After refeeding, including the normalization of food intake and body weight, α- and β-diversity, as well as the relative abundance of specific genera, were largely normalized in starved rats. Brain parameters appeared to normalize alongside microbial restitution with some aberrations in the white matter. We confirmed our previous findings of microbial dysbiosis during starvation and showed a high degree of reversibility. Thus, microbiome alterations in the ABA model appear to be mostly starvation-related. These findings support the usefulness of the ABA model in investigating starvation-induced effects on the microbiota-gut-brain axis to help comprehend the pathomechanisms of AN and potentially develop microbiome-targeted treatments for patients.
Collapse
Affiliation(s)
- Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Vanessa Kogel
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Lilly Kneisel
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074 Aachen, Germany
| |
Collapse
|
10
|
Ghaderi A. Eating Disorders and Nutritional Beliefs, Trends or Practices. Nutrients 2023; 15:2058. [PMID: 37432204 DOI: 10.3390/nu15092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/12/2023] Open
Abstract
This Special Issue of Nutrients on "Eating disorders and nutritional beliefs, trends or practices" contains ten empirical papers that cover various aspects of the topic [...].
Collapse
Affiliation(s)
- Ata Ghaderi
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|