1
|
García-Juárez M, García-Rodríguez A, Cruz-Carrillo G, Flores-Maldonado O, Becerril-Garcia M, Garza-Ocañas L, Torre-Villalvazo I, Camacho-Morales A. Intermittent Fasting Improves Social Interaction and Decreases Inflammatory Markers in Cortex and Hippocampus. Mol Neurobiol 2024:10.1007/s12035-024-04340-z. [PMID: 39002056 DOI: 10.1007/s12035-024-04340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.
Collapse
Affiliation(s)
- Martín García-Juárez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Adamary García-Rodríguez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Gabriela Cruz-Carrillo
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Becerril-Garcia
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de La Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), 14080, Mexico City, Mexico
| | - Alberto Camacho-Morales
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico.
- College of Medicine, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
2
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Avesani CM, Cuppari L, Nerbass FB, Lindholm B, Stenvinkel P. Ultraprocessed foods and chronic kidney disease-double trouble. Clin Kidney J 2023; 16:1723-1736. [PMID: 37915903 PMCID: PMC10616474 DOI: 10.1093/ckj/sfad103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 11/03/2023] Open
Abstract
High energy intake combined with low physical activity generates positive energy balance, which, when maintained, favours obesity, a highly prevalent morbidity linked to development of non-communicable chronic diseases, including chronic kidney disease (CKD). Among many factors contributing to disproportionately high energy intakes, and thereby to the obesity epidemic, the type and degree of food processing play an important role. Ultraprocessed foods (UPFs) are industrialized and quite often high-energy-dense products with added sugar, salt, unhealthy fats and food additives formulated to be palatable or hyperpalatable. UPFs can trigger an addictive eating behaviour and is typically characterized by an increase in energy intake. Furthermore, high consumption of UPFs, a hallmark of a Western diet, results in diets with poor quality. A high UPF intake is associated with higher risk for CKD. In addition, UPF consumption by patients with CKD is likely to predispose and/or to exacerbate uraemic metabolic derangements, such as insulin resistance, metabolic acidosis, hypertension, dysbiosis, hyperkalaemia and hyperphosphatemia. Global sales of UPFs per capita increased in all continents in recent decades. This is an important factor responsible for the nutrition transition, with home-made meals being replaced by ready-to-eat products. In this review we discuss the potential risk of UPFs in activating hedonic eating and their main implications for health, especially for kidney health and metabolic complications of CKD. We also present various aspects of consequences of UPFs on planetary health and discuss future directions for research to bring awareness of the harms of UPFs within the CKD scenario.
Collapse
Affiliation(s)
- Carla Maria Avesani
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Lilian Cuppari
- Division of Nephrology and Nutrition Program, Federal University of São Paulo and Sāo Paulo, Brazil
| | | | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
4
|
Mellado-Negrete A, Peña-Vázquez GI, Urías-Orona V, De La Garza AL. Polyphenol Bioaccessibility and Antioxidant Activity of Pomegranate ( Punica granatum) Peel Supplementation in Diet-Induced Obese Rats. J Med Food 2023; 26:570-579. [PMID: 37498320 DOI: 10.1089/jmf.2023.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Fruit by-products are a source of biocompounds with antioxidant properties and potential role in the obesity treatment. This study aimed to assess the effect of pomegranate (Punica granatum) peel (PP) supplementation on the total antioxidant capacity (TAC) in diet-induced obese rats. Thus, an in vitro gastrointestinal digestion was performed to evaluate the total phenolic content (TPC) and the antioxidant capacity of PP. Moreover, 15 male Wistar rats were randomized into three groups: control diet (CTL; 3.35 kcal/g), cafeteria (CAF) diet (3.72 kcal/g), and CAF diet supplemented with PP (CAF + PP; 200 mg/kg body weight; 3.72 kcal/g). Serum TAC was analyzed by ferric reducing antioxidant power and 2,2-Diphenil-1-picrylhydrazil assay. TPC in PP accounted for 8.82 ± 0.14 mg GAE/g in undigested samples. However, an in vitro digestion process was decreased by 94% the bioaccessibility of PP phenolic compounds in the intestinal phase, while PP supplementation increased serum TAC in diet-induced obese rats. Therefore, although PP phenolic compounds diminished after an in vitro digestion process, antioxidant effect was found in obese rats supplemented with PP.
Collapse
Affiliation(s)
- Anael Mellado-Negrete
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
| | - Gloria Itzel Peña-Vázquez
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Vania Urías-Orona
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
| | - Ana Laura De La Garza
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| |
Collapse
|
5
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
García-Beltrán A, Martínez R, Porres JM, Arrebola F, Artero IR, Galisteo M, Aranda P, Kapravelou G, López-Jurado M. Novel insights and mechanisms of diet-induced obesity: Mid-term versus long-term effects on hepatic transcriptome and antioxidant capacity in Sprague-Dawley rats. Life Sci 2023; 324:121746. [PMID: 37121540 DOI: 10.1016/j.lfs.2023.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
AIMS The study of molecular mechanisms related to obesity and associated pathologies like type 2-diabetes and non-alcoholic fatty liver disease requires animal experimental models in which the type of obesogenic diet and length of the experimental period to induce obesity deeply affect the metabolic alterations. Therefore, this study aimed to test the influence of aging along a rat model of diet-induced obesity in gene expression of the hepatic transcriptome. MAIN METHODS A high-fat/high-fructose diet to induce obesity was used. Mid- (13 weeks) and long-term (21 weeks) periods were established. Caloric intake, bodyweight, hepatic fat, fatty acid profile, histological changes, antioxidant activity, and complete transcriptome were analyzed. KEY FINDINGS Excess bodyweight, hepatic steatosis and altered lipid histology, modifications in liver antioxidant activity, and dysregulated expression of transcripts related to cell structure, glucose & lipid metabolism, antioxidant & detoxifying capacity were found. Modifications in obese and control rats were accounted for by the different lengths of the experimental period studied. SIGNIFICANCE Main mechanisms of hepatic fat accumulation were de novo lipogenesis or altered fatty acid catabolism for mid- or long-term study, respectively. Therefore, the choice of obesity-induction length is a key factor in the model of obesity used as a control for each specific experimental design.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain
| | - Jesus M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain.
| | - Francisco Arrebola
- Department of Histology, Institute of Neurosciences, Centre for Biomedical Research (CIBM), Universidad de Granada, 18016 Granada, Spain
| | - Inmaculada Ruiz Artero
- Department of Histology, Institute of Neurosciences, Centre for Biomedical Research (CIBM), Universidad de Granada, 18016 Granada, Spain
| | - Milagros Galisteo
- Department of Pharmacology, School of Pharmacy, Centre for Biomedical Research (CIBM), Universidad de Granada, Campus Universitario de Cartuja s/n, 18071 Granada, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research (CIBM), Institute for Research in Sport and Health (IMUDS), Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|