1
|
Zhao H, Bao S, Chen S, Yang Q, Lou K, Gai Y, Lin J, Liu C, Liu H, Zhang C, Yang R. Phytosomes Loaded with Mastoparan-M Represent a Novel Strategy for Breast Cancer Treatment. Int J Nanomedicine 2025; 20:109-124. [PMID: 39816377 PMCID: PMC11733207 DOI: 10.2147/ijn.s481871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Mastoparan-M (Mast-M) has cytotoxic effects on various tumor cells in vitro, including liver cancer and colorectal cancer. However, the anti-tumor mechanism of Mast-M remains unclear and its potential for anti-tumor therapy has not been investigated. Herein, we aimed to develop a novel phytosome formulation loaded with Mast-M and evaluate its efficacy against breast cancer both in vitro and in vivo. Furthermore, we investigated the underlying anti-tumor mechanisms of Mast-M. Methods The synthesis of Phy-Mast-M involved a co-solvent technique, followed by solvent evaporation. Its anti-tumor mechanism was investigated using CCK-8, clone formation, and apoptosis assays. Subsequently, the biodistribution and anti-tumor efficacy of Phy-Mast-M were assessed in vivo using the 4T1 tumor-bearing mouse model. Finally, the safety of Phy-Mast-M was evaluated in vivo. Results The prepared Phy-Mast-M demonstrated an exceptional monodisperse size distribution (125.67 ± 45.79 nm), and exhibited excellent stability under different physiological conditions. Phy-Mast-M could inhibit 4T1 cells growth through multiple channels, including arresting cell growth cycle and disturbing mitochondrial membrane integrity. Phy-Mast-M proved significantly higher accumulation at tumor sites in a tumor-bearing mouse model as compared to free Mast-M. Moreover, in vivo anti-tumor studies demonstrated that Phy-Mast-M exhibited superior curative inhibitory effects on tumor growth and favorable biocompatibility. Conclusion Phy-Mast-M demonstrates significant anti-tumor activity both in vitro and in vivo. Moreover, its potential for clinical translation suggests promising prospects for cancer therapy, offering more drug options for breast cancer patients.
Collapse
Affiliation(s)
- Hairong Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuanglong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Kangliang Lou
- School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yating Gai
- Xiamen Research Institute of Food and Drug Quality Inspection, Xiamen, People’s Republic of China
| | - Jinyan Lin
- School of Public Health, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Ruiqin Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Yuan J, Liu J, Li X, Zhou C, Qian M, Zou Z, Lu C, Huang G, Jin M. Melittin suppresses aerobic glycolysis by regulating HSF1/PDK3 to increase chemosensitivity of NSCLC. Eur J Pharmacol 2025; 986:177084. [PMID: 39547404 DOI: 10.1016/j.ejphar.2024.177084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Non-small cell lung cancer (NSCLC), although considered non-immunogenic, is often resistant to chemotherapy agents during the course of treatment in clinical patients. Melittin (C131H229N39O31, CAS: 20449-79-0), the major component of honey bee venom, is a promising anticancer drug. However, the mechanism employed by melittin to reverse chemotherapy resistance of NSCLC cells remains unknown. In this study, the Cell Counting Kit 8, ethynyl deoxyuridine assay, and other assays were utilized to elucidate the melittin effects upon cell proliferation. Proteomics, lung cancer (LC) tissue chip, and Western blot analysis were used to identify potential targets of melittin. A549/DDP cells were employed to investigate the melittin effects against cisplatin resistance. Also, an in vivo animal experiment was conducted to further clarify the regulatory function of melittin towards cisplatin resistance of A549/DDP cells. Results showed that melittin inhibited malignant progression of A549/DDP cells by down-regulation of pyruvate dehydrogenase kinase 3 (PDK3)-mediated aerobic glycolysis and inhibition of heat shock factor 1 (HSF1) expression. The therapeutic effect of melittin was increased by combination with KNK437 and impaired chemotherapy resistance regarding A549/DDP cells via reversing aerobic glycolysis. The in vivo experiments confirmed that melittin incremented A549/DDP cell cisplatin sensitivities. Collectively, the data suggested that melittin suppressed aerobic glycolysis by regulating HSF1/PDK3, which incremented cisplatin sensitivity of A549/DDP cells. It may provide a new treatment method for chemotherapy resistance in clinical NSCLC patients.
Collapse
Affiliation(s)
- Yuhan Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaying Yuan
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Jiao Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaodan Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chuanqiang Zhou
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Minxuan Qian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Zhangyan Zou
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
İlhan H, Kabakcı D, Seçme M. Cytotoxic effects of bee venom-loaded ZIF-8 nanoparticles on thyroid cancer cells: a promising strategy for targeted therapy. Med Oncol 2024; 42:32. [PMID: 39699709 DOI: 10.1007/s12032-024-02584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Thyroid cancer continues to be a notable health issue, requiring the creation of novel treatment methods to enhance patient results. The objective of this study is to investigate the potential of utilizing bee venom (BV)-loaded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as a novel strategy for specifically targeting and treating medullary thyroid cancer cells. Due to their wide surface area and configurable pore size, ZIF-8 nanoparticles are ideal for drug delivery. Bee venom's cytotoxic capabilities are used in ZIF-8 nanoparticles to target thyroid cancer cells more effectively. ZIF-8 nanoparticles containing bee venom were tested on TT medullary thyroid cancer cell lines. The effects of these nanoparticles on cell viability, proliferation, and apoptosis were investigated. IC50 value at 24 h for BV-ZIF-8 nanoparticles in TT medullary thyroid carcinoma cells was determined to be 17.19 µg/mL, while the IC50 value at 48 h was determined to be 16.39 µg/mL. It has been demonstrated that nanoparticle treatment upregulates the Bax and caspase-3 genes while downregulating the Bcl-2, CCND1, and CDK4 genes. Additionally, it was observed that oxidative stress was triggered in the nanoparticle-treated group. Furthermore, an examination of its mechanisms was conducted, with a specific emphasis on the modulation of critical signaling pathways that are implicated in the progression of cancer. In thyroid cancer cells, ZIF-8 nanoparticles infused with bee venom promote programmed cell death and impair key biological processes.
Collapse
Affiliation(s)
- Hasan İlhan
- Department of Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Dilek Kabakcı
- Department of Animal Production and Technologies, Faculty of Applied Sciences, Muş Alparslan University, Muş, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| |
Collapse
|
4
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Wang Y, Yuan T, He L, Huang J, Wilfred N, Yang W, Jin M, Huang G, Lu C. Melittin treatment suppressed malignant NSCLC progression through enhancing CTSB-mediated hyperautophagy. Biomed Pharmacother 2024; 180:117573. [PMID: 39426282 DOI: 10.1016/j.biopha.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Melittin is preclinically investigated as anticancer agent in multiple tumor types. But its regulation role and regulatory mechanism regarding NSCLC is unknown. In our investigation, Proteomic test was employed to identify proteins that expressed abnormally in cancer cells and that with Melittin treatmented. The results showed CTSB was one of the Top proteins with different expression levels in the lysosomes of Melittin-treatmented cancer cells and showed an up-regulation trend. CTSB expression was increased in NSCLC cancer tissues compared to adjacent normal tissues, as demonstrated in lung cancer tissue chips experiment. However, Melittin treatment increased the CTSB level in lysosomes, which inhibited the malignant progression of NSCLC. We hypothesized that the relative homeostasis of CTSB in cancer cells was destroyed, and CTSB exerts its hydrolytic effect excessively, resulting in excessive autophagy of cancer cells, thus inhibiting the malignant progression of cancer cells. The direct combination of Melittin and CTSB was proposed by molecular docking technique, LiP-SMap was used to analyze the target genes and active components extracted from high-throughput sequencing proteomic data, and successfully verified that melittin was successfully demonstrated to directly target CTSB-binding. In vivo and in vitro studies have shown that Melittin treatment inhibits the malignant progression of A549 and HCC1833 cells and animal tumors, namely non-small cell lung cancer, by promoting CTSB-mediated hyperautophagy. CTSB-specific inhibitor CA-074 Me and autophagy inhibitor 3-MA treatment reversed the inhibit effect of Melittin to the malignant progression of NSCLC. Taken together, Melittin treatment inhibited malignant progression regarding NSCLC through enhancing CTSB-mediated hyperautophagy.
Collapse
Affiliation(s)
- Yuhan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Tailei Yuan
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Laboratory Department of Nanjing Jiangbei Hospital Affiliated to Xinglin College, Nantong University, PR China
| | - Longyue He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jingjing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Nodemsahajoel Wilfred
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Wenhui Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Changlian Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| |
Collapse
|
6
|
Duan X, Zou H, Yang J, Liu S, Xu T, Ding J. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy. J Control Release 2024; 375:285-299. [PMID: 39216597 DOI: 10.1016/j.jconrel.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy is a rapidly developing and effective strategy for cancer therapy. Among various immunotherapy approaches, peptides have garnered significant attention due to their potent immunomodulatory effects. In particular, melittin emerged as a promising candidate to enhance cancer immunotherapy by inducing immunogenic cell death, promoting the maturation of antigen-presenting cells, activating T cells, enhancing the infiltration and cytotoxicity of effector lymphocytes, and modulating macrophage phenotypes for relieving immunosuppression. However, the clinical application of melittin is limited by poor targeting and systemic toxicity. To overcome these challenges, melittin has been incorporated into biomaterials and related nanotechnologies, resulting in extended circulation time in vivo, improved targeting, reduced adverse effects, and enhanced anti-cancer immunological action. This review provides an in-depth analysis of the immunomodulatory effects of melittin-incorporated nanomedicines and examines their development and challenges for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
7
|
Jadhav V, Bhagare A, Palake A, Kodam K, Dhaygude A, Kardel A, Lokhande D, Aher J. In vitro cytotoxicity assessment of biosynthesized Apis mellifera bee venom nanoparticles (BVNPs) against MCF-7 breast cancer cell lines. DISCOVER NANO 2024; 19:170. [PMID: 39402248 PMCID: PMC11473470 DOI: 10.1186/s11671-024-04123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this work, we reported the synthesis of honey bee (Apis mellifera) venom-derived nanoparticles via a hydrothermal method. This method not only ensures the preservation of the bee venom's bioactive components but also enhances their potential stability, thus broadening the scope for their applications in the biomedicinal field. The synthesis method started with the homogenization suspension of bee venom, followed by its hydrothermal process to synthesize bee venom nanoparticles (BVNPs). The successful synthesis of BVNPs was characterized using various characteristic techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Fourier Transforms Infrared (FTIR) Spectroscopy, Zeta Potential (ZP), Liquid Chromatography-Mass Spectrometry (LCMS), and Transmission Electron Microscopy (TEM). The synthesis of BVNPs through biosynthesis is shown by the visible violet-brown color development at 347 nm by UV-Vis spectroscopy. FTIR analysis revealed the presence of several functional groups in the BVNPs, including alcohols (-OH), phenols (C6H5-), carboxylic acids (-COOH), amines (-NH2, -NH-), aldehydes (-CHO), ketones (-CO-), nitriles (-CN), amides (-CO-N-), imines (-CNH-), esters (-COO-), and polysaccharides. These functional groups, as confirmed by their specific stretching and bending vibrational modes, contribute to the diverse biological activities of BVNPs, including cytotoxicity against MCF-7 breast cancer cells. The ZP of the BVNPs indicated good colloidal stability at - 45 mV. LCMS analysis confirmed the presence of major bioactive molecules, including melittin & apamin and TEM analysis shows the BVNPs exhibited a quasi-spherical shape with good dispersion, the average size was approximately 25 nm, with some being smaller (quantum dots) and interplanar spacing of 0.236 nm indicated a highly ordered crystalline structure. Moreover, the anticancer efficacy of the BVNPs was ascertained through in vitro assays against MCF-7 breast cancer cells, showing a dose-dependent cytotoxic effect. The findings of this study underscore the viability of hydrothermal synthesis in producing biologically active and structurally stable BVNPs, with a significant potential for anticancer activities.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India.
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Arun Bhagare
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Ashwini Palake
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Dhaygude
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Anant Kardel
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Dnyaneshwar Lokhande
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Jayraj Aher
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| |
Collapse
|
8
|
Yao X, Kang J, Li Y, Zhang H, Zhang H, Chen E. Melittin protects against neural cell damage in rats following ischemic stroke. Neuropeptides 2024; 107:102462. [PMID: 39197274 DOI: 10.1016/j.npep.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model. METHODS The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry. RESULTS Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1β in the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05). CONCLUSION MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Xiang Yao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Junlong Kang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China
| | - Yufei Li
- The High School Affiliated to Soochow University, Suzhou, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| | - E Chen
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| |
Collapse
|
9
|
Cui Z, Zhou Z, Sun Z, Duan J, Liu R, Qi C, Yan C. Melittin and phospholipase A2: Promising anti-cancer candidates from bee venom. Biomed Pharmacother 2024; 179:117385. [PMID: 39241571 DOI: 10.1016/j.biopha.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
As the research on cancer-related treatment deepens, integrating traditional therapies with emerging interventions reveals new therapeutic possibilities. Melittin and phospholipase A2, the primary anti-cancer components of bee venom, are currently gaining increasing attention. This article reviews the various formulations of melittin in cancer therapy and its potential applications in clinical treatments. The reviewed formulations include melittin analogs, hydrogels, adenoviruses, fusion toxins, fusion peptides/proteins, conjugates, liposomes, and nanoparticles. The article also explored the collaborative therapeutic effects of melittin with natural products, synthetic drugs, radiotherapy, and gene expression regulatory strategies. Phospholipase A2 plays a key role in bee venom anti-cancer strategy due to its unique biological activity. Using an extensive literature review and the latest scientific results, this paper explores the current state and challenges of this field, with the aim to provide new perspectives that guide future research and potential clinical applications. This will further promote the application of bee venom in cancer therapy.
Collapse
Affiliation(s)
- Ziyan Cui
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Zegao Zhou
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Ziyan Sun
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Jiayue Duan
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Runtian Liu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Cheng Qi
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Changqing Yan
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
11
|
Aher J, Jadhav V, Bhagare A, Lokhande D. Honey bee venom loaded nanomaterials: A promising avenue for therapeutic delivery. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101310. [DOI: 10.1016/j.nanoso.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
12
|
Chahla C, Rima M, Mouawad C, Roufayel R, Kovacic H, El Obeid D, Sabatier JM, Luis J, Fajloun Z, El-Waly B. Effect of Apis mellifera syriaca Bee Venom on Glioblastoma Cancer: In Vitro and In Vivo Studies. Molecules 2024; 29:3950. [PMID: 39203027 PMCID: PMC11357583 DOI: 10.3390/molecules29163950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and fatal primary brain tumor. The resistance of GBM to conventional treatments is attributed to factors such as the blood-brain barrier, tumor heterogeneity, and treatment-resistant stem cells. Current therapeutic efforts show limited survival benefits, emphasizing the urgent need for novel treatments. In this context, natural anti-cancer extracts and especially animal venoms have garnered attention for their potential therapeutic benefits. Bee venom in general and that of the Middle Eastern bee, Apis mellifera syriaca in particular, has been shown to have cytotoxic effects on various cancer cell types, but not glioblastoma. Therefore, this study aimed to explore the potential of A. mellifera syriaca venom as a selective anti-cancer agent for glioblastoma through in vitro and in vivo studies. Our results revealed a strong cytotoxic effect of A. mellifera syriaca venom on U87 glioblastoma cells, with an IC50 of 14.32 µg/mL using the MTT test and an IC50 of 7.49 µg/mL using the LDH test. Cells treated with the bee venom became permeable to propidium iodide without showing any signs of early apoptosis, suggesting compromised membrane integrity but not early apoptosis. In these cells, poly (ADP-ribose) polymerase (PARP) underwent proteolytic cleavage similar to that seen in necrosis. Subsequent in vivo investigations demonstrated a significant reduction in the number of U87 cells in mice following bee venom injection, accompanied by a significant increase in cells expressing caspase-3, suggesting the occurrence of cellular apoptosis. These findings highlight the potential of A. mellifera syriaca venom as a therapeutically useful tool in the search for new drug candidates against glioblastoma and give insights into the molecular mechanism through which the venom acts on cancer cells.
Collapse
Affiliation(s)
- Charbel Chahla
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Charbel Mouawad
- Laboratoire d’Histologie Embryologie Biologie de la Reproduction CECOS, Assistance Publique-Hôpitaux Universitaires Paris Centre, CHU Cochin, 75014 Paris, France;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Hervé Kovacic
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Dany El Obeid
- Faculty of Agriculture & Veterinary Sciences, Lebanese University, Dekwaneh, Beirut 1100, Lebanon;
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - José Luis
- Inst Neurophysiopathol (INP), CNRS, Aix-Marseille Université, 13385 Marseille, France; (C.C.); (H.K.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Bilal El-Waly
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon;
| |
Collapse
|
13
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
14
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
15
|
Rouhi A, Falah F, Azghandi M, Alizadeh Behbahani B, Tabatabaei-Yazdi F, Ibrahim SA, Dertli E, Vasiee A. Investigating the Effect of Melittin Peptide in Preventing Biofilm Formation, Adhesion and Expression of Virulence Genes in Listeria monocytogenes. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10318-z. [PMID: 38963508 DOI: 10.1007/s12602-024-10318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry.
Collapse
Affiliation(s)
- Arezou Rouhi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjan Azghandi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Farideh Tabatabaei-Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC, 24711, USA
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul, 34210, Türkiye
| | - Alireza Vasiee
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
16
|
Hejníková M, Tomčala A, Černý J, Kodrík D. Melittin-The principal toxin of honeybee venom-Is also produced in the honeybee fat body. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109928. [PMID: 38649084 DOI: 10.1016/j.cbpc.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Melittin is a powerful toxin present in honeybee venom that is active in a wide range of animals, from insects to humans. Melittin exerts numerous biological, toxicological, and pharmacological effects, the most important of which is destruction of the cell membrane. The phospholipase activity of melittin and its ability to activate phospholipases in the venom contribute to these actions. Using analytical methods, we discovered that the honeybee Apis mellifera produces melittin not only in the venom gland but also in its fat body cells, which remain resistant to this toxin's effects. We suggest that melittin acts as an anti-bacterial agent, since its gene expression is significantly upregulated when honeybees are infected with Escherichia coli and Listeria monocytogenes bacteria; additionally, melittin effectively kills these bacteria in the disc diffusion test. We hypothesize that the chemical and physicochemical properties of the melittin molecule (hydrophilicity, lipophilicity, and capacity to form tetramers) in combination with reactive conditions (melittin concentration, salt concentration, pH, and temperature) are responsible for the targeted destruction of bacterial cells and apparent tolerance towards own tissue cells. Considering that melittin is an important current and, importantly, potential broad-spectrum medication, a thorough understanding of the observed phenomena may significantly increase its use in clinical practice.
Collapse
Affiliation(s)
- Markéta Hejníková
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Aleš Tomčala
- University of South Bohemia, Faculty of Fisheries and Protection of Water, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Jan Černý
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Easwaran M, Abdelrahman F, Madasamy S, Venkidasamy B. Phage-delivered melittin for oral squamous cell Carcinoma: A potential therapeutic agent. Int Immunopharmacol 2024; 134:112163. [PMID: 38705763 DOI: 10.1016/j.intimp.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Affiliation(s)
- Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| |
Collapse
|
18
|
Jang BC, Kwon ES, Lee YJ, Jung JI, Moon YS, Kwon DR. Comparison of Muscle Regeneration Effects at Different Melittin Concentrations in Rabbit Atrophied Muscle. Int J Mol Sci 2024; 25:5035. [PMID: 38732255 PMCID: PMC11084904 DOI: 10.3390/ijms25095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 μg/kg of Melittin to Group 2 (G2-4 μg/kg Melittin); 20 μg/kg of Melittin to Group 3 (G3-20 μg/kg Melittin); and 100 μg/kg of Melittin to Group 4 (G4-100 μg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.
Collapse
Affiliation(s)
- Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Eun Sang Kwon
- Department of Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae Ik Jung
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| |
Collapse
|
19
|
Akkoyunlu A, Dülger G. Exploring the antibiofilm effects on Escherichia coli biofilm associated with colon cancer and anticancer activities on HCT116 cell line of bee products. BIOFOULING 2024; 40:235-244. [PMID: 38584359 DOI: 10.1080/08927014.2024.2338106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The association between dysbiotic microbiota biofilm and colon cancer has recently begun to attract attention. In the study, the apitherapeutic effects of bee products (honey, bee venom, royal jelly, pollen, perga and propolis) obtained from the endemic Yığılca ecotype of Apis mellifera anatoliaca were investigated. Antibiofilm activity were performed by microplate assay using crystal violet staining to measure adherent biofilm biomass of Escherichia coli capable of forming biofilms. Bee venom showed the highest inhibition effect (73.98%) at 50% concentration. Honey, perga and royal jelly reduced biofilm formation by >50% at all concentrations. The antiproliferation effect on the HCT116 colon cancer cell line was investigated with the water‑soluble tetrazolium salt‑1 assay. After 48 h of honey application at 50% concentration, cell proliferation decreased by 86.51%. The high cytotoxic effects of royal jelly and bee venom are also remarkable. Additionally, apoptotic pathway analysis was performed by ELISA using caspase 3, 8 and 9 enzyme-linked immunosorbent assay kits. All bee products induced a higher expression of caspase 9 compared with caspase 8. Natural products that upregulate caspase proteins are promising therapeutic targets for proliferative diseases.
Collapse
Affiliation(s)
- Ayşegül Akkoyunlu
- Department of Biology, Graduate Education Institute, Duzce University, Konuralp/Düzce, Turkey
| | - Görkem Dülger
- Department of Medical Biology, Faculty of Medicine, Duzce University, Konuralp/Düzce, Turkey
| |
Collapse
|
20
|
Zhang C, Zhang B, Tang C, Shi X, Guo B, Wang F. A Ratiometric Gene-Switch System for miRNA Sensing and Gene Regulation. SMALL METHODS 2024; 8:e2301266. [PMID: 38009771 DOI: 10.1002/smtd.202301266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
microRNAs (miRNAs) are a class of non-coding, small RNAs that play an important role in diverse biological processes and diseases. By regulating the expression of eukaryotic genes post-transcriptionally in a sequence-specific manner, miRNAs are widely used to design synthetic RNA switches. However, most of the RNA switches are often dependent on the corresponding ligand molecules, whose specificity and concentration would affect the efficiency of synthetic RNA circuits. Here, a fused transcriptional repressor Gal4BD-Rluc based gene-switch system Gal-miR for miRNA visualization and gene regulation is described. By placing a luciferase downstream gene under the control of endogenous miRNA machinery, the Gal-miR system makes the conversion of miRNA-mediated gene silencing into a ratiometric bioluminescent signal, which quantitatively reflected miRNA-206 activity during myogenic differentiation. Moreover, it demonstrates that this gene-switch system can effectively inhibit breast cancer cell viability, migration and invasion under the control of specific miRNAs by replacing the downstream gene with melittin functional gene. The study proposes a powerful modular genetic design for achieving precise control of transgene expression in a miRNA responsive way, as well as visualizing the dynamics of miRNA activity.
Collapse
Affiliation(s)
- Chuanxian Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Beilei Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuroimaging, School of Life Science and Technology, Ministry of Education, Xidian University, Xi'an, 710071, China
| | - Xiaorui Shi
- Engineering Research Center of Molecular and Neuroimaging, School of Life Science and Technology, Ministry of Education, Xidian University, Xi'an, 710071, China
| | - Bin Guo
- Engineering Research Center of Molecular and Neuroimaging, School of Life Science and Technology, Ministry of Education, Xidian University, Xi'an, 710071, China
| | - Fu Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, 712046, China
| |
Collapse
|
21
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
22
|
Maicelo-Quintana JL, Reyna-Gonzales K, Balcázar-Zumaeta CR, Auquiñivin-Silva EA, Castro-Alayo EM, Medina-Mendoza M, Cayo-Colca IS, Maldonado-Ramirez I, Silva-Zuta MZ. Potential application of bee products in food industry: An exploratory review. Heliyon 2024; 10:e24056. [PMID: 38268589 PMCID: PMC10806293 DOI: 10.1016/j.heliyon.2024.e24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past eight years, bee products such as wax, honey, propolis, and pollen have generated intense curiosity about their potential food uses; to explore these possibilities, this review examines the nutritional benefits and notable characteristics of each product related to the food industry. While all offer distinct advantages, there are challenges to overcome, including the risk of honey contamination. Indeed, honey has excellent potential as a healthier alternative to sugar, while propolis's remarkable antibacterial and antioxidant properties can be enhanced through microencapsulation. Pollen is a versatile food with multiple applications in various products. In addition, the addition of beeswax to oleogels and its use as a coating demonstrate significant improvements in the quality and preservation of environmentally sustainable foods over time. This study demonstrates that bee products and apitherapy are essential for sustainable future food and innovative medical treatments.
Collapse
Affiliation(s)
- Jorge L. Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Katherine Reyna-Gonzales
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Efrain M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Italo Maldonado-Ramirez
- Facultad de Ingeniería de Sistemas y Mecánica, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Miguelina Z. Silva-Zuta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
23
|
Huang S, Su G, Jiang S, Chen L, Huang J, Yang F. New N-Terminal Fatty-Acid-Modified Melittin Analogs with Potent Biological Activity. Int J Mol Sci 2024; 25:867. [PMID: 38255940 PMCID: PMC10815238 DOI: 10.3390/ijms25020867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Shan Jiang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| |
Collapse
|
24
|
Jin X, Wu H, Yu J, Cao Y, Zhang L, Zhang Z, Lv H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J Control Release 2024; 365:802-817. [PMID: 38092255 DOI: 10.1016/j.jconrel.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmaceutics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jie Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanni Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lanyi Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|