1
|
Yao X, Kang J, Li Y, Zhang H, Zhang H, Chen E. Melittin protects against neural cell damage in rats following ischemic stroke. Neuropeptides 2024; 107:102462. [PMID: 39197274 DOI: 10.1016/j.npep.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model. METHODS The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry. RESULTS Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1β in the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05). CONCLUSION MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Xiang Yao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Junlong Kang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China
| | - Yufei Li
- The High School Affiliated to Soochow University, Suzhou, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| | - E Chen
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xia Men, China.
| |
Collapse
|
2
|
Hricisák L, Pál É, Nagy D, Delank M, Polycarpou A, Fülöp Á, Sándor P, Sótonyi P, Ungvári Z, Benyó Z. NO Deficiency Compromises Inter- and Intrahemispheric Blood Flow Adaptation to Unilateral Carotid Artery Occlusion. Int J Mol Sci 2024; 25:697. [PMID: 38255769 PMCID: PMC10815552 DOI: 10.3390/ijms25020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.
Collapse
Affiliation(s)
- László Hricisák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Max Delank
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
| | - Andreas Polycarpou
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- Mayo Clinic, College of Medicine and Science, Rochester, MN 55905, USA
- Division of Cardiothoracic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sándor
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Semmelweis University, 1122 Budapest, Hungary;
| | - Zoltán Ungvári
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (L.H.); (É.P.); (D.N.); (M.D.); (A.P.); (Á.F.); (P.S.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| |
Collapse
|