1
|
Almatroodi SA, Rahmani AH. Unlocking the Pharmacological Potential of Myricetin Against Various Pathogenesis. Int J Mol Sci 2025; 26:4188. [PMID: 40362425 PMCID: PMC12071824 DOI: 10.3390/ijms26094188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Myricetin is a natural flavonoid with powerful antioxidant and anti-inflammatory potential commonly found in vegetables, fruits, nuts, and tea. The vital role of this flavonoid in the prevention and treatment of various diseases is evidenced by its ability to reduce inflammation and oxidative stress, maintain tissue architecture, and modulate cell signaling pathways. Thus, this review summarizes recent evidence on myricetin, focusing precisely on its mechanisms of action in various pathogenesis, including obesity, diabetes mellitus, arthritis, osteoporosis, liver, neuro, cardio, and reproductive system-associated pathogenesis. Moreover, it has been revealed that myricetin exhibits anti-microbial properties due to obstructive virulence factors, preventing biofilm formation and disrupting membrane integrity. Additionally, synergistic potential with other drugs and the role of myricetin-based nanoformulations in different diseases are properly discussed. This review seeks to increase the understanding of myricetin's pharmacological potential in various diseases, principally highlighting its effective mechanisms of action. Further wide-ranging research, as well as more randomized and controlled clinical trial studies, should be executed to reconnoiter this compound's therapeutic value, safety, and usefulness against various human pathogenesis.
Collapse
Affiliation(s)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Barros J, Abraão A, Gouvinhas I, Granato D, Barros AN. Advances in Leaf Plant Bioactive Compounds: Modulation of Chronic Inflammation Related to Obesity. Int J Mol Sci 2025; 26:3358. [PMID: 40244195 PMCID: PMC11989288 DOI: 10.3390/ijms26073358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Over the years, there has been a tendency for an increase in global obesity. The World Health Organization's (WHO) 2024 report states that in 2019, more than one billion people were obese, and this condition was responsible for five million deaths, being that obesity is more prevalent among adults compared to adolescents and children. Obesity is a chronic disease characterized by alterations in adipose tissue. When excessive food is consumed and energy expenditure is low, adipose tissue undergoes hypertrophy and hyperplasia. This process activates B cells and induces the transition of anti-inflammatory M2-like macrophages into pro-inflammatory M1-like macrophages. B cells, acting as inflammatory mediators, stimulate pro-inflammatory CD8+ T cells, and promote macrophage infiltration into tissues. This condition triggers inflammation, increases oxidative stress, and ultimately leads to cellular death. During inflammation, an increase of pro-inflammatory cytokines occurs along with a decrease of anti-inflammatory cytokines. By contrast, the increase of oxidative stress is related to an increase of reactive oxygen species (ROS), oxidation of biomolecules, and a decrease in antioxidants. This mechanism for obesity can be mitigated through several healthy lifestyle changes, primarily including regular physical activity and healthy eating. These factors help reduce pro-inflammatory mediators and ROS, lowering inflammation and oxidative stress. Therefore, this review article focuses on studying the bioactive compounds present in the edible leaves of Annona cherimola Mill., Ipomoea batata (L.) Poir., Colocasia esculenta (L.) Schott, Eriobotrya japonica, Cymbopogon citratus, Psidium guajava (L.), and Smallanthus sonchifolius to evaluate their effects on the mechanisms involved in obesity.
Collapse
Affiliation(s)
- Jorge Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
- Department of Agricultural sciences, Higher Polytechnic Institute of Bengo, B. Caboxa, Dande, Bengo 244-2004, Angola
| | - Ana Abraão
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| | - Irene Gouvinhas
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| | - Daniel Granato
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.G.)
| |
Collapse
|
3
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
4
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Babotă M, Frumuzachi O, Tanase C, Mocan A. Efficacy of Myricetin Supplementation on Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis of In Vivo Mice Studies. Nutrients 2024; 16:3730. [PMID: 39519561 PMCID: PMC11547919 DOI: 10.3390/nu16213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is a disorder characterized by insulin resistance, hyperglycemia, and dyslipidemia. Myricetin, a flavonoid found in various plants, has shown potential anti-diabetic effects in murine studies. This meta-analysis aimed to evaluate the impact of myricetin supplementation on glucose metabolism and lipid profiles in mouse models of metabolic diseases. METHODS A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPERO: CRD42024591569). Studies involving mice with metabolic disease models and exclusively using myricetin supplementation were checked across four databases (Embase, Scopus, PubMed, and WoS) until 23rd September 2024. The primary outcomes assessed were blood glucose (BG), insulin levels, triacylglycerol (TAG), total cholesterol (TC), HDL, and LDL. A random-effects model was applied to estimate standardized mean differences (SMD), and SYRCLE's risk-of-bias tool for animal studies was used. RESULTS Twenty-one studies with 514 mice met the inclusion criteria. Myricetin supplementation significantly reduced BG (SMD = -1.45, CI: -1.91 to -0.99, p < 0.00001, I2 = 74%), insulin (SMD = -1.78, CI: -2.89 to -0.68, p = 0.002, I2 = 86%), TAG (SMD = -2.60, CI: -3.24 to -1.96, p < 0.00001, I2 = 81%), TC (SMD = -1.86, CI: -2.29 to -1.44, p < 0.00001, I2 = 62%), and LDL (SMD = -2.95, CI: -3.75 to -2.14, p < 0.00001, I2 = 74%). However, the effect on HDL was not statistically significant (SMD = 0.71, CI: -0.01 to 1.43, p = 0.05, I2 = 83%). CONCLUSIONS Myricetin supplementation improved glucose metabolism and lipid profiles in mouse models, suggesting its potential as a therapeutic agent for managing T2DM. However, further research is needed to confirm these findings in human studies.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
8
|
Goyal A, Sikarwar O, Verma A, Solanki K, Agrawal N, Dubey N, Yadav HN. Unveiling myricetin's pharmacological potency: A comprehensive exploration of the molecular pathways with special focus on PI3K/AKT and Nrf2 signaling. J Biochem Mol Toxicol 2024; 38:e23739. [PMID: 38769721 DOI: 10.1002/jbt.23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Myricetin can be found in the traditional Chinese medicinal plant, Myrica rubra. Myricetin is a flavonoid that is present in many vegetables, fruits, and plants and is considered to have strong antioxidant properties as well as a wide range of therapeutic applications. Growing interest has been piqued by its classification as a polyphenolic molecule because of its potential therapeutic benefits in both the prevention and management of numerous medical conditions. To clarify myricetin's traditional medical uses, modern research has investigated various pharmacological effects such as antioxidant, anticancer, anti-inflammation, antiviral, antidiabetic, immunomodulation, and antineurodegenerative effects. Myricetin shows promise as a nutritional flavonol that could be beneficial in the prevention and mitigation of prevalent health conditions like diabetes, cognitive decline, and various types of cancer in humans. The findings included in this study indicate that myricetin has a great deal of promise for application in the formulation of medicinal products and nutritional supplements since it affects several enzyme activities and alters inflammatory markers. However, comprehensive preclinical studies and research studies are necessary to lay the groundwork for assessing myricetin's possible effectiveness in treating these long-term ailments. This review summarizes both in vivo and in vitro studies investigating myricetin's possible interactions through the nuclear factor-E2-related factor 2 (Nrf2) as well as PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) signaling pathways in an attempt to clarify the compound's possible clinical applicability across a range of disorders.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Om Sikarwar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Neetu Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
9
|
Paravati MR, Procopio AC, Milanović M, Scarlata GGM, Milošević N, Ružić M, Milić N, Abenavoli L. Onion Polyphenols as Multi-Target-Directed Ligands in MASLD: A Preliminary Molecular Docking Study. Nutrients 2024; 16:1226. [PMID: 38674916 PMCID: PMC11054911 DOI: 10.3390/nu16081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
A sedentary lifestyle associated with unregulated diets rich in high-calorie foods have contributed to the great prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) latterly, with up to 60% in the high-risk population and 25% in the general population. The absence of specific pharmacological strategies for this syndrome represents one of the major problems in the management of MASLD patients. Lifestyle interventions and adherence to a healthy diet are the main cornerstones of current therapies. The identification of nutraceuticals useful in the treatment of MASLD appears to be one of the most promising strategies for the development of new effective and safe treatments for this disease. The onion, one of the most widely studied foods in the field of nutraceuticals, serves as an inexhaustible reservoir of potent compounds with various beneficial effects. The following preliminary study analyzes, mediating in silico studies, the iteration of a library of typical onion compounds with 3-hydroxy-3-methylglutaryl-coenzyme A reductase, liver receptors X α and β, as well as peroxisome proliferator-activated receptors α and γ. In this study, for the first time promising smart molecules from the onion that could have a beneficial action in MASLD patients were identified.
Collapse
Affiliation(s)
- Maria Rosaria Paravati
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| | - Anna Caterina Procopio
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | | | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | - Maja Ružić
- Faculty of Medicine, University of Novi Sad, Clinic for Infectious Diseases, University Clinical Centre of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (M.M.); (N.M.); (N.M.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (M.R.P.); (A.C.P.); (G.G.M.S.)
| |
Collapse
|
10
|
Coskunlu B, Koroglu MK, Hersek I, Ertas B, Sen A, Sener G, Ercan F. Ameliorative effects of Myrtus communis L. extract involving the inhibition of oxidative stress on high fat diet-induced testis damage in rats. Biotech Histochem 2024; 99:157-173. [PMID: 38682543 DOI: 10.1080/10520295.2024.2344491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The possible protective effects of Myrtus communis L. (MC) extract on a high fat diet (HFD)-induced testicular injury in a rat model were investigated using histological and biochemical methods. Wistar albino rats were divided into three groups: a standard diet control group; a HFD group; and an HFD+MC group. The HFD and HFD+MC groups were fed with a HFD for 16 weeks. MC extract (100 mg/kg) was given orally five days a week to the rats in the HFD+MC group during the last four weeks of the experiment. Leptin, triglyceride, high-density lipoproteins, cholesterol, estrogen, testosterone, LH and FSH were analyzed in blood serum. Sperm parameters were evaluated from the epididymis. Testicular morphology, proliferative, apoptotic and NADPH oxidase-2 (NOX2)-positive cells were evaluated histologically. Testicular oxidative stress parameters were analyzed biochemically. In the HFD group, lipid and hormone profiles were changed, abnormal spermatozoa, degenerated seminiferous tubules with apoptotic and NOX2-positive cells were increased in number, and sperm motility and germinal proliferative cells decreased compared to the control group. Moreover, testicular malondialdehyde, 8-hydroxy-2-deoxyguanosine and myeloperoxidase levels increased, whereas glutathione and superoxide dismutase levels decreased in the HFD group compared to the control group. All these histological and biochemical features were ameliorated by MC treatment of HFD-fed rats. In conclusion, HFD caused alterations in sperm parameters and testicular morphology by increasing oxidative damage and apoptosis. MC extract may have potential protective effects by inhibiting oxidative damage.
Collapse
Affiliation(s)
- Busra Coskunlu
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - M Kutay Koroglu
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Irem Hersek
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Busra Ertas
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ali Sen
- Department of Pharmacognosy, School of Pharmacy, Marmara University, Istanbul, Turkey
| | - Goksel Sener
- Department of Pharmacology, School of Pharmacy, Fenerbahçe University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
11
|
Mao T, Fan J. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway. Biochem Genet 2024; 62:950-967. [PMID: 37507641 DOI: 10.1007/s10528-023-10456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Tian Mao
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
12
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Yu W, Zhang F, Meng D, Zhang X, Feng Y, Yin G, Liang P, Chen S, Liu H. Mechanism of Action and Related Natural Regulators of Nrf2 in Nonalcoholic Fatty Liver Disease. Curr Drug Deliv 2024; 21:1300-1319. [PMID: 39034715 DOI: 10.2174/0115672018260113231023064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 07/23/2024]
Abstract
With the acceleration of people's pace of life, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world, which greatly threatens people's health and safety. Therefore, there is still an urgent need for higher-quality research and treatment in this area. Nuclear factor Red-2-related factor 2 (Nrf2), as a key transcription factor in the regulation of oxidative stress, plays an important role in inducing the body's antioxidant response. Although there are no approved drugs targeting Nrf2 to treat NAFLD so far, it is still of great significance to target Nrf2 to alleviate NAFLD. In recent years, studies have reported that many natural products treat NAFLD by acting on Nrf2 or Nrf2 pathways. This article reviews the role of Nrf2 in the pathogenesis of NAFLD and summarizes the currently reported natural products targeting Nrf2 or Nrf2 pathway for the treatment of NAFLD, which provides new ideas for the development of new NAFLD-related drugs.
Collapse
Affiliation(s)
- Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Decheng Meng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Yanan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Guoliang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Pengpeng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Suwen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| | - Hongshuai Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People's Republic of China
| |
Collapse
|
14
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
15
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
16
|
Cheng Y, Wan S, Yao L, Lin D, Wu T, Chen Y, Zhang A, Lu C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116166. [PMID: 36649850 DOI: 10.1016/j.jep.2023.116166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.
Collapse
Affiliation(s)
- Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Linna Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Yongjian Chen
- Zhejiang Limited Company of Science and Technology of SHENGSHI BIOLOGY, Huzhou, 313000, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| |
Collapse
|
17
|
Younatan Y, Majid M, Phull AR, Baig MW, Irshad N, Fatima H, Nasir B, Zafar A, Majid A, Parveen A, Haq IU. Thymus linearis Extracts Ameliorate Indices of Metabolic Syndrome in Sprague Dawley Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5648837. [PMID: 37151604 PMCID: PMC10159745 DOI: 10.1155/2023/5648837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
MATERIALS AND METHODS The extract library (n-hexane (NH), ethyl acetate (EA), methanol (M), distilled water (DW), and combined extract (CE)) was standardized using in vitro phytochemical, antioxidant, and α-amylase inhibition assays, after which the protective effect of selected "hit," i.e., CE against metabolic syndrome, was determined in vivo, using rats fed a high-fat diet supplemented with additional cholesterol administration. CE was administered to Sprague Dawley rats in high dose as 100 mg/kg in carboxymethyl cellulose (CMC) (1 ml; 0.75% in DW) and low-dose group as 50 mg/kg in CMC (0.5 ml; 0.75% in DW). After 10 weeks, the effects of CE on insulin resistance, lipid metabolism, nonalcoholic fatty liver disease (NAFLD), oxidative stress, and genotoxicity were assessed through histological, biochemical, and hematological investigations. RESULTS Phytochemical analysis including RP-HPLC analysis of the extracts showed that flavonoids and phenolics (myricetin, kaempferol, and apigenin), previously known to be effective against obesity and diabetes, are present in the extracts. Antioxidant studies revealed that the plant possesses a highly significant (p < 0.05) concentration of antioxidants. Satisfactory α-amylase inhibitory activity was also observed in in vitro experiments. In vivo studies showed that CE-administered animals had significantly (p < 0.05) lower weight gain and smaller adipocytes than the control group. Moreover, CE resisted any significant (p < 0.05) change in the organ weights. Analogous to findings from its traditional use, the plant extract had a positive modulatory effect on insulin resistance and hyperglycemia. The study also indicated that CE resisted high-fat diet-induced disturbance in lipid profile and countered any pathological changes in liver enzymes caused by fat-infused diet. Furthermore, a study on endogenous antioxidant levels indicated that CE was effective in maintaining catalase and peroxidase levels within the normal range and resisted the effects of lipid peroxidation of thiobarbituric acid reactive substances. CONCLUSION In principle, the current study's findings scientifically validate the implication of T. linearis in metabolic syndrome and recommend further studies on molecular insights of the observed therapeutic activity.
Collapse
Affiliation(s)
- Yamema Younatan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 44000, Pakistan
| | - Abdul Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Majid
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Ihsan-ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
18
|
Su ZY, Lai BA, Lin ZH, Wei GJ, Huang SH, Tung YC, Wu TY, Hun Lee J, Hsu YC. Water extract of lotus leaves has hepatoprotective activity by enhancing Nrf2- and epigenetics-mediated cellular antioxidant capacity in mouse hepatocytes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
20
|
Kimura I, Kagawa S, Tsuneki H, Tanaka K, Nagashima F. Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol Ther 2022; 235:108159. [DOI: 10.1016/j.pharmthera.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
21
|
He X, Hu Y, Liu W, Zhu G, Zhang R, You J, Shao Y, Li Y, Zhang Z, Cui J, He Y, Ge G, Yang H. Deciphering the Effective Constituents and Mechanisms of Portulaca oleracea L. for Treating NASH via Integrating Bioinformatics Analysis and Experimental Pharmacology. Front Pharmacol 2022; 12:818227. [PMID: 35126150 PMCID: PMC8807659 DOI: 10.3389/fphar.2021.818227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a highly prevalent metabolic disorder. Currently, there are no effective pharmacotherapeutic options for preventing and treating NASH. Portulaca oleracea L. (POL) is an edible herb that has been used for preventing and treating some metabolic disorders in China, but the bioactive constituents in POL and the related mechanisms for treating NASH are still unclear. Here, a comprehensive research strategy was used to identify the core genes and the key constituents in POL for treating NASH, via integrating bioinformatics analysis and experimental pharmacology both in vitro and in vivo. The phenotypes and mechanisms of POL were carefully investigated by performing a set of in vivo and in vitro experiments. Bioinformatics analysis suggested that prostaglandin-endoperoxide synthase 2 (PTGS2) was the core target and myricetin (Myr) was the key constituent in POL for treating NASH. In NASH mice model induced by methionine choline deficiency diet, POL significantly alleviated hepatic steatosis and liver injury. In free fatty acids-induced hepatocytes, POL and Myr significantly down-regulated the expression of PTGS2, decreased the number of lipid droplets, and regulated the mRNA expression of lipid synthesis and homeostasis genes, including FASN, CPT1a, SERBP1c, ACC1, and SCD1. In lipopolysaccharide-induced macrophages, POL and Myr significantly reduced the expression of PTGS2 and blocked the secretion of inflammatory mediators TNF-α, IL-6, and IL-1β. Further investigations demonstrate that Myr acts as both suppressor and inhibitor of PTGS2. Collectively, POL and its major component Myr can ameliorate NASH via down-regulating and inhibiting PTGS2, suggesting that POL and Myr can be developed as novel medicines for treating NASH.
Collapse
Affiliation(s)
- Xiaoli He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiren Hu
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoxi Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawen You
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shao
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhao Li
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanming He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Khalil M, Hayek S, Khalil N, Serale N, Vergani L, Calasso M, De Angelis M, Portincasa P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J Funct Foods 2021; 87:104811. [DOI: 10.1016/j.jff.2021.104811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Li H, Li H, Jiang S, Xu J, Cui Y, Wang H, Dai L, Lin Y, Zhang J. Study of the metabolism of myricetin in rat urine, plasma and feces by ultra-high-performance liquid chromatography. Biomed Chromatogr 2021; 36:e5281. [PMID: 34792824 DOI: 10.1002/bmc.5281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Myricetin is a common natural flavonoid compound with various pharmacological activities. However, the metabolite characterization of this substance remains inadequate. In this study, a simple and rapid system strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combining parallel reaction monitoring mode was established to screen and identify myricetin metabolites in rat urine, plasma and feces after oral administration. A total of 38 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding cLogP values, etc. These metabolites were presumed to be generated through glucuronidation, glucosylation, sulfation, dihydroxylation, acetylation, hydrogenation, hydroxylation and their composite reactions. In addition, the characteristic fragmentation pathways of flavonoids with more metabolites were summarized for the subsequent metabolite identification. The study provides an overall metabolic profile of myricetin, which would be of great help in predicting the in vivo pharmacokinetic profiles and understanding the action mechanism of this active ingredient.
Collapse
Affiliation(s)
- Huajian Li
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Haoran Li
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Yifang Cui
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Hong Wang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
- School of Chinese Pharmacy, Shandong University of Chinese Medicine, Shandong, China
| | - Long Dai
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| | - Yongqiang Lin
- Shandong Provincial Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard innovation and Quality Evaluation of TCM, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| |
Collapse
|
24
|
Choi HN, Shin JY, Kim JI. Ameliorative Effect of Myricetin on Nonalcoholic Fatty Liver Disease in ob/ob Mice. J Med Food 2021; 24:1092-1099. [PMID: 34668765 DOI: 10.1089/jmf.2021.k.0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity, insulin resistance, and oxidative stress are important risk factors for nonalcoholic fatty liver disease (NAFLD). This study aimed at determining the beneficial effects of myricetin against NAFLD in ob/ob mice. C57BL/6-Lepob/ob mice (n = 21) were fed an AIN-93G diet (ob/ob control group) or diet containing 0.04% (low myricetin; LMTN group) or 0.08% (high myricetin; HMTN group) myricetin, and lean heterozygous littermates (lean control group, n = 7) were fed AIN-93G diet for 10 weeks. HMTN consumption significantly lowered serum glucose levels and homeostasis model assessment for insulin resistance values in ob/ob mice. In addition to reducing serum triglyceride (TG) and cholesterol levels, HMTN significantly decreased total hepatic lipid and TG levels partly through downregulation of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1c expression. The reduction in the levels of hepatic thiobarbituric acid reactive substances by HMTN likely resulted from the elevation of nuclear factor erythroid-2-related factor 2 expression. Tumor necrosis factor-α and monocyte chemoattractant protein 1 expressions were reduced by LMTN and HMTN, and HMTN also decreased interleukin-6 expression. These results suggest that myricetin has beneficial effects against NAFLD by regulating the expression of transcription factors of hepatic lipid metabolism, the antioxidant system, and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ha-Neul Choi
- Department of Food and Nutrition, College of Natural Sciences, Changwon National University, Changwon, Gyeongnam, Korea
| | - Jin-Yeong Shin
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, Gyeongnam, Korea
| | - Jung-In Kim
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, Gyeongnam, Korea
| |
Collapse
|
25
|
Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, El‐Ghorab A, Ahmad I, Pezzani R, Arshad MU, Bacha U, Shariarti MA, Rauf A, Muhammad N, Shah ZA, Zengin G, Islam S. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr 2021; 9:5854-5868. [PMID: 34646551 PMCID: PMC8498061 DOI: 10.1002/fsn3.2513] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myricetin is a critical nutritive component of diet providing immunological protection and beneficial for maintaining good health. It is found in fruits, vegetables, tea, and wine. The families Myricaceae, Polygonaceae, Primulaceae, Pinaceae, and Anacardiaceae are the richest sources of myricetin. Different researchers explored the therapeutic potential of this valuable constituent such as anticancer, antidiabetic, antiobesity, cardiovascular protection, osteoporosis protection, anti-inflammatory, and hepatoprotective. In addition to these, the compound has been tested for cancer and diabetic mellitus during clinical trials. Health benefits of myricetin are related to its impact on different cell processes, such as apoptosis, glycolysis, cell cycle, energy balance, lipid level, serum protein concentrations, and osteoclastogenesis. This review explored the potential health benefits of myricetin with a specific emphasis on its mechanism of action, considering the most updated and novel findings in the field.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Zaffar Mehmood
- School of Life SciencesForman Christian College (A Chartered University)LahorePakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVictoriaAustralia
| | - Ahmed El‐Ghorab
- College of Science, Chemistry DepartmentJouf UniversitySakakaSaudi Arabia
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Raffaele Pezzani
- Endocrinology UnitDepartment of Medicine (DIMED)University of PadovaPadovaItaly
- AIROBAssociazione Italiana per la Ricerca Oncologica di BasePadovaItaly
| | - Muhammad Umair Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Umar Bacha
- School of Health Sciences (SHS)University of Management and TechnologyJohar Town, LahorePakistan
| | - Mohammad Ali Shariarti
- Department of Technology of Food ProductionsK.G. RazumovskyMoscow State University of Technologies and Management (the First Cossack University)MoscowRussian Federation
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Naveed Muhammad
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Zafar Ali Shah
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Gokhan Zengin
- Department of BiologyScience FacultySelcuk UniversityKonyaTurkey
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
26
|
Coêlho CFF, Souza ILS, Chagas VT, Ribeiro NLX, Pinto BAS, França LM, Paes AMDA. Myricetin improves metabolic outcomes but not cognitive deficit associated to metabolic syndrome in male mice. Food Funct 2021; 12:3586-3596. [PMID: 33900338 DOI: 10.1039/d1fo00073j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myricetin is a flavonol highly prevalent in edible vegetables and fruits, with recognized hypoglycemic and anti-obesity effects, besides great antioxidant capacity. Thus, this study sought to investigate whether myricetin is able to improve metabolic and behavioral outcomes found in monosodium l-glutamate (MSG) obese mice, a model of metabolic syndrome characterized by early hyperinsulinemia associated to obesity, dyslipidemia, hepatic steatosis, anxiety and cognitive deficit. Newborn male mice received MSG (4 mg kg-1 day-1, s.c.) on alternate days during the first 10 days of life for obesity induction, while control pups received equimolar saline solution. From postnatal day 90 to 135, MSG mice were orally treated with myricetin (50 mg kg-1 day-1) or distilled water, while control animals received vehicle. During the last week of treatment, all groups were submitted to behavioral tests: open field maze, elevated plus maze and Morris water maze. At the end of treatment, animals were euthanized for collection of liver, serum and adipose tissue fat pads. Myricetin treatment reduced the elevated serum levels of glucose and triglycerides, typically found in MSG mice, as well as restored peripheral insulin sensitivity and liver steatosis. Moreover, myricetin ameliorated the lack of thigmotaxis and exploratory behavior, but did not improve the cognitive deficit presented by MSG mice. Therefore, this study contributes to the pharmacological validation of myricetin as an affordable and healthy therapeutic adjuvant for the treatment of metabolic syndrome and most of its comorbidities.
Collapse
Affiliation(s)
- Caio Fernando Ferreira Coêlho
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil.
| | - Ivana Letícia Santos Souza
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil.
| | - Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil. and Department of Morphological Sciences, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil
| | - Nathalee Liberal Xavier Ribeiro
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil.
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil. and Department of Physiological Sciences, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil. and Department of Physiological Sciences, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Health Sciences Graduate Program, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil. and Department of Physiological Sciences, Federal University of Maranhão, 1966, São Luís, MA 65080-805, Brazil
| |
Collapse
|
27
|
Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 2021; 12:3898-3918. [PMID: 33977953 DOI: 10.1039/d0fo02736g] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease. Dietary supplementation has become a promising strategy for managing NAFLD. Hesperetin, a citrus flavonoid, is mainly found in citrus fruits (oranges, grapefruit, and lemons) and possesses multiple pharmacological properties, including anti-cancer, anti-Alzheimer and anti-diabetic effects. However, the anti-NAFLD effect and mechanisms of hesperetin remain unclear. In this study, we investigated the therapeutic effect of hesperetin against NAFLD and the underlying mechanism in vitro and in vivo. In oleic acid (OA)-induced HepG2 cells, hesperetin upregulated antioxidant levels (SOD/GPx/GR/GCLC/HO-1) by triggering the PI3 K/AKT-Nrf2 pathway, alleviating OA-induced reactive oxygen species (ROS) overproduction and hepatotoxicity. Furthermore, hesperetin suppressed NF-κB activation and reduced inflammatory cytokine secretion (TNF-α and IL-6). More importantly, we revealed that this anti-inflammatory effect is attributed to reduced ROS overproduction by the Nrf2 pathway, as pre-treatment with Nrf2 siRNA or an inhibitor of superoxide dismutase (SOD) or/and glutathione peroxidase (GPx) abolished hesperetin-induced NF-κB inactivation and reductions in inflammatory cytokine secretion. In a rat model of high-fat diet (HFD)-induced NAFLD, we confirmed that hesperetin relieved hepatic steatosis, oxidative stress, inflammatory cell infiltration and fibrosis. Moreover, hesperetin activated the PI3 K/AKT-Nrf2 pathway in the liver, increasing antioxidant expression and inhibiting NF-κB activation and inflammatory cytokine secretion. In summary, our results demonstrate that hesperetin ameliorates hepatic oxidative stress through the PI3 K/AKT-Nrf2 pathway and that this antioxidative effect further suppresses NF-κB-mediated inflammation during NAFLD progression. Thus, our study suggests that hesperetin may be an effective dietary supplement for improving NAFLD by suppressing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.
| | - Tianqi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Panpan Liu
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Fuyuan Yang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
28
|
Oliveira AKDS, de Oliveira E Silva AM, Pereira RO, Santos AS, Barbosa Junior EV, Bezerra MT, Barreto RSS, Quintans-Junior LJ, Quintans JSS. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit Rev Food Sci Nutr 2021; 62:7827-7848. [PMID: 33970708 DOI: 10.1080/10408398.2021.1919051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a major public health problem, and there is increasing scientific interest in its mechanisms, as well as a search for new compounds with antioxidant and anti-inflammatory properties that can minimize the metabolic complications associated with its pathology. One potential source of these compounds is natural products; Among these, flavonoids are a promising group of natural substances. Flavonoids are active constituents with diverse biological activities and are widely found in plants kingdom. Numerous studies have shown that flavonoids can effectively inhibit obesity and related metabolic disorders. The review synthesizes recent evidence in respect of progress in the understanding of the anti-obesity effects of flavonoids. Such effects which occurs through the modulation of proteins, genes and transcriptional factors involved in decreasing lipogenesis, increasing lipolysis, expenditure energy, stimulating fatty acids B-oxidation, digestion and metabolism of carbohydrates. In addition to mitigating inflammatory responses and suppress oxidative stress. A better understanding of the modulating effects and mechanisms of flavonoids in relation to obesity will allow us to better use these compounds to treat or even prevent obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Anne Karoline de Souza Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ana Mara de Oliveira E Silva
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Nutrition, Federal University of Sergipe, UFS, São Cristóvão, SE, Brazil
| | | | | | | | - Mikaella Tuanny Bezerra
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Lucindo J Quintans-Junior
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| |
Collapse
|
29
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
30
|
Leng YR, Zhang MH, Luo JG, Zhang H. Pathogenesis of NASH and Promising Natural Products. Chin J Nat Med 2021; 19:12-27. [PMID: 33516448 DOI: 10.1016/s1875-5364(21)60002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. The mechanism of the diaease progression, which is lacking effective therapy, remains obsure. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary. Currently, an increasing number of studies have focused on natural constituents from medicinal plants which have been emerged as a new hope for NASH. This review summarized the pathogenesis of NASH, animal models commonly used, and the promising targets for therapeutics. We also reviewed the natural constituents as potential NASH therapeutic agents.
Collapse
Affiliation(s)
- Ying-Rong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Hui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, Kuppusamy UR. Amelioration of high-fat diet-induced obesity and its associated complications by a myricetin derivative-rich fraction from Syzygium malaccense in C57BL/6J mice. Food Funct 2021; 12:5876-5891. [PMID: 34019055 DOI: 10.1039/d1fo00539a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Devi Nallappan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. and Laboratory Animal Centre, Centre of Research Services, Institute of Research Management & Monitoring, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
33
|
Nutraceutical Properties of Polyphenols against Liver Diseases. Nutrients 2020; 12:nu12113517. [PMID: 33203174 PMCID: PMC7697723 DOI: 10.3390/nu12113517] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Current food tendencies, suboptimal dietary habits and a sedentary lifestyle are spreading metabolic disorders worldwide. Consequently, the prevalence of liver pathologies is increasing, as it is the main metabolic organ in the body. Chronic liver diseases, with non-alcoholic fatty liver disease (NAFLD) as the main cause, have an alarming prevalence of around 25% worldwide. Otherwise, the consumption of certain drugs leads to an acute liver failure (ALF), with drug-induced liver injury (DILI) as its main cause, or alcoholic liver disease (ALD). Although programs carried out by authorities are focused on improving dietary habits and lifestyle, the long-term compliance of the patient makes them difficult to follow. Thus, the supplementation with certain substances may represent a more easy-to-follow approach for patients. In this context, the consumption of polyphenol-rich food represents an attractive alternative as these compounds have been characterized to be effective in ameliorating liver pathologies. Despite of their structural diversity, certain similar characteristics allow to classify polyphenols in 5 groups: stilbenes, flavonoids, phenolic acids, lignans and curcuminoids. Herein, we have identified the most relevant compounds in each group and characterized their main sources. By this, authorities should encourage the consumption of polyphenol-rich products, as most of them are available in quotidian life, which might reduce the socioeconomical burden of liver diseases.
Collapse
|
34
|
Wang L, Wu H, Yang F, Dong W. The Protective Effects of Myricetin against Cardiovascular Disease. J Nutr Sci Vitaminol (Tokyo) 2020; 65:470-476. [PMID: 31902859 DOI: 10.3177/jnsv.65.470] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally, except Africa, and poses a severe health burden worldwide. Both in vitro and in vivo studies have demonstrated the protective effects of myricetin for preventing CVD. For this review, we have assessed the literature from 2009 to 2019 at home and abroad to uncover the protective roles of myricetin for preventing CVD. Myricetin exhibits cardioprotective, anti-hypertensive, anti-atherosclerotic, anti-hyperglycemic, and anti-hyperlipidemic effects. In addition, myricetin may alleviate some of the complications caused by adult-onset diabetes. The combined functions of myricetin allow for the prevention of CVD. This review describes the possible therapeutic benefits of myricetin, along with its potential mechanisms of action, to support the clinical use of the myricetin for the prevention of CVD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Haiyan Wu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| | - Fei Yang
- Quality Department, Qilu Pharmaceutical Company
| | - Wenbin Dong
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
35
|
Loubet Filho PS, Santos TG, Reis VHDOT, Santee CM, da Costa MP, Cândido CJ, Filiú WFDO, Portugal LC, Dos Santos EF. Campomanesia sp. flour attenuates non-alcoholic fatty liver disease on rats fed with a hypercaloric diet. J Anim Physiol Anim Nutr (Berl) 2020; 104:1575-1582. [PMID: 32279410 DOI: 10.1111/jpn.13361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/06/2020] [Accepted: 03/14/2020] [Indexed: 11/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder caused by excess consumption of hypercaloric foods. Guavira (Campomanesia sp.) pulp has broad technological applicability, yet the peel and seeds are considered industrial residue. The objective of this unprecedented study was to evaluate the effects of the flour from guavira's industrial residue (GF) consumption in rats fed with hypercaloric diet (HD). During 65 days, 50 rats were separated into a control group: 1%, 2%, 4% and 8% HD with GF complementation in the diet. The GF chemical composition, phenolic compounds, antioxidant capacity, serum biochemical parameters (glucose, cholesterol, HDL, non-HDL, triglycerides, AST, ALT, and oral glucose tolerance test), fat liver content, and hepatic histomorphology had been characterized. GF is mainly composed of fibres, with phenolic content of 7,391.09 mg AGE/100 g GF and relevant antioxidant capacity (IC50 2.22 and ORAC 155.68 μmol/TE g-1 ). Serum biochemical analysis did not differ statistically (except ALT reduction, p < .05). Fat liver content was smaller on HD2%GF (p < .0001). The control group and 1% GF showed greater diffuse microvesicular steatosis compared to the other groups when using hepatic morphological analysis (p < .05). GF consumption attenuated NAFLD caused by a hypercaloric diet, and this effect may be related to the fibre content and bioactive compounds in GF.
Collapse
Affiliation(s)
- Paulo Sérgio Loubet Filho
- College of Pharmacy, Food and Nutrition, Nutrition Course, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Thayná Gil Santos
- College of Pharmacy, Food and Nutrition, Nutrition Course, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Cynthia Monteiro Santee
- College of Pharmacy, Food and Nutrition, Nutrition Course, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Matheus Pereira da Costa
- College of Pharmacy, Food and Nutrition, Pharmacy Course, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Camila Jordão Cândido
- College of Pharmacy, Food and Nutrition, Pharmacy Course, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Luciane Candeloro Portugal
- Histology Laboratory, College of Bioscience, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Elisvânia Freitas Dos Santos
- College of Pharmacy, Food and Nutrition, Nutrition Course, Postgraduate Program on Health and Development of Middle-West, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
36
|
Yao Q, Li S, Li X, Wang F, Tu C. Myricetin Modulates Macrophage Polarization and Mitigates Liver Inflammation and Fibrosis in a Murine Model of Nonalcoholic Steatohepatitis. Front Med (Lausanne) 2020; 7:71. [PMID: 32195263 PMCID: PMC7065264 DOI: 10.3389/fmed.2020.00071] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the beneficial effects of myricetin in a diet-induced nonalcoholic steatohepatitis (NASH) model and the underlying mechanism. C57BL/6J mice were fed a standard chow or the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 8 weeks with the treatment of myricetin (100 mg/kg) or vehicle by daily gavage. Hepatic inflammation, steatosis, fibrosis, and hepatic stellate cells (HSC) activation were assessed. We also analyzed M1 and M2 macrophages and its related markers in livers from NASH mice and in RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) or interleukin 4 (IL-4) in vitro. Furthermore, we determined the effect of myricetin on the triggering receptor expressed on myeloid cells-1 (TREM-1), toll like receptor (TLR) 2 and 4, and myeloid differentiation factor 88 (MyD88) signaling both in livers from mice and in RAW264.7 cells stimulated by LPS. Our results revealed that myricetin remarkably ameliorated hepatic steatosis, inflammation, and inhibited hepatic macrophage infiltration in CDAHFD-fed mice. Myricetin-treated to CDAHFD-fed mice also inhibited liver fibrosis and HSC activation when compared with vehicle-treated to those mice. Moreover, myricetin inhibited M1 macrophage polarization and its relative markers in livers of NASH mice while induced M2 polarization. Similarly, in vitro study, myricetin inhibited the LPS-induced mRNA expression of M1 macrophages marker genes and induced IL-4-induced M2 macrophage marker genes in RAW264.7 macrophages. Mechanically, myricetin inhibited the expression of TREM-1 and TLR2/4-MyD88 signaling molecules in livers from NASH mice and in RAW264.7 macrophages stimulated by LPS in vitro. Additionally, myricetin inhibited the activation of nuclear factor (NF)-κB signaling and the phosphorylation of the signal transducer and activation of transcription 3 (STAT3) in LPS-stimulated RAW264.7 macrophages. Taken together, our data indicated that myricetin modulated the polarization of macrophages via inhibiting the TREM-1-TLR2/4-MyD88 signaling molecules in macrophages and therefore mitigated NASH and hepatic fibrosis in the CDAHFD-diet-induced NASH model in mice.
Collapse
Affiliation(s)
- Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fu Wang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Chuantao Tu
| |
Collapse
|
37
|
Sim WC, Lee W, Sim H, Lee KY, Jung SH, Choi YJ, Kim HY, Kang KW, Lee JY, Choi YJ, Kim SK, Jun DW, Kim W, Lee BH. Downregulation of PHGDH expression and hepatic serine level contribute to the development of fatty liver disease. Metabolism 2020; 102:154000. [PMID: 31678070 DOI: 10.1016/j.metabol.2019.154000] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Supplementation with serine attenuates alcoholic fatty liver by regulating homocysteine metabolism and lipogenesis. However, little is known about serine metabolism in fatty liver disease (FLD). We aimed to investigate the changes in serine biosynthetic pathways in humans and animal models of fatty liver and their contribution to the development of FLD. METHODS High-fat diet (HFD)-induced steatosis and methionine-choline-deficient diet-induced steatohepatitis animal models were employed. Human serum samples were obtained from patients with FLD whose proton density fat fraction was estimated by magnetic resonance imaging. 3-Phosphoglycerate dehydrogenase (Phgdh)-knockout mouse embryonic fibroblasts (MEF) and transgenic mice overexpressing Phgdh (Tg-phgdh) were used to evaluate the role of serine metabolism in the development of FLD. RESULTS Expression of Phgdh was markedly reduced in the animal models. There were significant negative correlations of the serum serine with the liver fat fraction, serum alanine transaminase, and triglyceride levels among patients with FLD. Increased lipid accumulation and reduced NAD+ and SIRT1 activity were observed in Phgdh-knockout MEF and primary hepatocytes incubated with free fatty acids; these effects were reversed by overexpression of Phgdh. Tg-Phgdh mice showed significantly reduced hepatic triglyceride accumulation compared with wild-type littermates fed a HFD, which was accompanied by increased SIRT1 activity and reduced expression of lipogenic genes and proteins. CONCLUSIONS Human and experimental data suggest that reduced Phgdh expression and serine levels are closely associated with the development of FLD.
Collapse
Affiliation(s)
- Woo-Cheol Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyungtai Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hwan Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Salazar-López NJ, González-Aguilar GA, Rouzaud-Sández O, Loarca-Piña G, Gorinstein S, Robles-Sánchez M. Sorghum bran supplementation ameliorates dyslipidemia, glucose dysregulation, inflammation and stress oxidative induced by a high-fat diet in rats. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1702105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Norma Julieta Salazar-López
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, México
- Coordinación de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, México
| | - Gustavo A. González-Aguilar
- Coordinación de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, México
| | - Ofelia Rouzaud-Sández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, México
| | - Guadalupe Loarca-Piña
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, The Hebrew University -Hadassah Medical School, Jerusalem, Israel
| | - Maribel Robles-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, México
| |
Collapse
|
39
|
Kim YJ, Kim SR, Kim DY, Woo JT, Kwon EY, Han Y, Choi MS, Jung UJ. Supplementation of the Flavonoid Myricitrin Attenuates the Adverse Metabolic Effects of Long-Term Consumption of a High-Fat Diet in Mice. J Med Food 2019; 22:1151-1158. [DOI: 10.1089/jmf.2018.4341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Young-Je Kim
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Do Yeon Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Je Tae Woo
- Okinawa Research Center Co. Ltd., Okinawa Health Biotechnology Research and Development Center, Uruma, Japan
- Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
40
|
Liu YY, You JJ, Xu W, Zhai T, Du CY, Chen Y, Han FM. Gynura procumbens aqueous extract alleviates nonalcoholic steatohepatitis through CFLAR-JNK pathway in vivo and in vitro. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Xia SF, Qiu YY, Chen LM, Jiang YY, Huang W, Xie ZX, Tang X, Sun J. Myricetin alleviated hepatic steatosis by acting on microRNA-146b/thyroid hormone receptor b pathway in high-fat diet fed C57BL/6J mice. Food Funct 2019; 10:1465-1477. [PMID: 30776032 DOI: 10.1039/c8fo01452c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic microRNAs (miRs) regulate local thyroid hormone (TH) action and TH-related lipid metabolism. We previously found that myricetin effectively ameliorated hepatic steatosis by targeting PPAR signaling pathway, in which the differentially expressed genes were TH-responsive. The present study was designed to explore the mechanism by which myricetin regulated miR-dependent TH action and lipid metabolism on high-fat diet (HFD)-induced hepatic steatosis. C57BL/6J mice were fed a HFD with or without 100 mg kg-1 myricetin by oral gavage for 16 weeks (n = 8 for each group). The results showed that myricetin improved HFD-induced hepatic steatosis, increased serum TH levels and hepatic type 1 deiodinase (DIO1) activities, and elevated energy expenditure in relation to the HFD mice. Meanwhile, myricetin inhibited miR-205 and miR-146b up-regulation induced by HFD, and also up-regulated their targets, Dio1 and thyroid hormone receptor b (TRb) expression, at both the transcriptional and translational levels, accompanied by the regulation of TH responsive lipid metabolism genes. Overexpression or knockdown of miR-205 failed to affect Dio1 mRNA and protein levels in primary mouse hepatocytes. Myricetin directly decreased miR-146b expression in miR-146b mimic-treated hepatocytes to elevate TRb levels. However, the beneficial effects of myricetin on hepatic TH action and lipid metabolism were abolished by TRb siRNA in free fatty acid (FFA)-treated hepatocytes. Our results indicated that myricetin attenuated hepatic steatosis via the miR-146b/TRb pathway and should be considered for the management of NAFLD conditions.
Collapse
Affiliation(s)
- Shu-Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pan X, Chen T, Zhang Z, Chen X, Chen C, Chen L, Wang X, Ying X. Activation of Nrf2/HO-1 signal with Myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis. Int Immunopharmacol 2019; 75:105742. [PMID: 31325727 DOI: 10.1016/j.intimp.2019.105742] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Osteoarthritis (OA), one of the prevailing joint degenerative disorders, contributes to the disability around the world. However, no effective therapeutic was introduced currently. Myricetin was reported to possess the function of anti-inflammatory, anti-diabetic and anti-cancer. Thus, we investigate the protection role of myricetin in OA progression and the potential molecular mechanism in present study. METHODS Quantitative realtime PCR and western blotting were performed to evaluate the expression of MMP-13, Aggrecan, iNOS, and COX-2 at both gene and protein levels. An enzyme-linked immunosorbent assay was used to evaluate the levels of inflammatory factors (PGE2, TNF-α, and IL-6). The PI3K/AKT, Nrf2/HO-1 and nuclear factor kappa B (NF-κB) signaling pathways were analyzed by western blotting, and immunofluorescence was used to assess the expression of Nrf2, Collagen II and MMP13. The in vitro effect of myricetin was evaluated by intragastric administration into a mouse osteoarthritis model induced by destabilization of the medial meniscus. RESULTS Myricetin not only inhibited the generation of inflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α and IL-6, but also suppressed the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in human chondrocytes under IL-1β stimulation. Moreover, Metalloproteinase 13 (MMP13) and thrombospondin motifs 5 (ADAMTS5), which resulted in the degradation of cartilage, were also suppressed in chondrocytes with the treatment of myricetin. To explore the potential mechanism, we found out that myricetin suppressed NF-κB signaling pathway through Nrf2/HO-1 axis in human chondrocytes. Besides, myricetin regulated the Nrf2 signaling pathway through PI3K/Akt pathway. In addition, in vivo study demonstrated that myricetin could ameliorated the progression of OA in mice DMM model through PI3K/Akt mediated Nrf2 signaling pathway. CONCLUSION Taken together, our data first demonstrated that myricetin possesses the therapeutic potential on OA through PI3K/Akt mediated Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingting Chen
- The First Affiliated Hospital of Wenzhou Medical University, NanBaiXiang Street, Wenzhou, Zhejiang Province, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaowei Chen
- The First Affiliated Hospital of Wenzhou Medical University, NanBaiXiang Street, Wenzhou, Zhejiang Province, China
| | - Chengshu Chen
- The Second People Hospital of Pingyang, Wenzhou, Zhejiang Province, China
| | - Long Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaozhou Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou 325027, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
43
|
Guo C, Xue G, Pan B, Zhao M, Chen S, Gao J, Chen T, Qiu L. Myricetin Ameliorates Ethanol-Induced Lipid Accumulation in Liver Cells by Reducing Fatty Acid Biosynthesis. Mol Nutr Food Res 2019; 63:e1801393. [PMID: 31168926 DOI: 10.1002/mnfr.201801393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/28/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Alcoholic liver disease is a serious threat to human health. The development of drug candidates from complementary and alternative medicines is an attractive approach. Myricetin can be found in fruit, vegetables, and herbs. This study investigates the protective effect of myricetin on ethanol-induced injury in mouse liver cells. METHODS AND RESULTS Oil-red O staining, assays of oxidative stress and measurements of inflammatory markers in mouse AML12 liver cells collectively demonstrate that myricetin elicits a curative effect on ethanol-induced injury. Next, the role of myricetin in the metabolic regulation of ethanol pathology in liver cells is assessed by gas chromatography coupled with mass spectrometry. Myricetin inhibits ethanol-stimulated fatty acid biosynthesis. Additionally, dodecanoic acid may be proposed as a potential biomarker related to ethanol pathology or myricetin therapy. It is also observed that myricetin enhances ethanol-induced inhibition of the mitochondrial electron transport chain. Moreover, fumaric acid is found to be a candidate biomarker related to ethanol toxicity or myricetin therapy. Quantitative reverse-transcription-PCR shows that ethanol-induced fatty acid synthase and sterol regulatory element-binding protein-1c mRNA levels are alleviated by myricetin. Finally, myricetin increases ethanol-induced inhibition of phosphorylation of AMP-activated protein kinase. CONCLUSION These results elucidate the pharmacological mechanism of myricetin on ethanol-induced lipid accumulation.
Collapse
Affiliation(s)
- Chang Guo
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Guoqing Xue
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Bei Pan
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Mengjie Zhao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Si Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Jing Gao
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China
| | - Tong Chen
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| | - Longxin Qiu
- School of Life Sciences, Longyan University, Longyan, 364012, P. R. China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, P. R. China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, 364012, P. R. China
| |
Collapse
|
44
|
Yang ZJ, Wang HR, Wang YI, Zhai ZH, Wang LW, Li L, Zhang C, Tang L. Myricetin Attenuated Diabetes-Associated Kidney Injuries and Dysfunction via Regulating Nuclear Factor (Erythroid Derived 2)-Like 2 and Nuclear Factor-κB Signaling. Front Pharmacol 2019; 10:647. [PMID: 31244660 PMCID: PMC6580432 DOI: 10.3389/fphar.2019.00647] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background/Aims: Previous studies have suggested that myricetin (Myr) could promote the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like (Nrf2). This study aimed to investigate whether Myr could attenuate diabetes-associated kidney injuries and dysfunction in wild-type (WT) and Nrf2 knockdown (Nrf2-KD) mice. Methods: Lentivirus-mediated Nrf2-KD and WT mice were used to establish type 1 diabetes mellitus (DM) by streptozotocin (STZ) injection. WT and Nrf2-KD mice were then randomly allocated into four groups: control (CON), Myr, STZ, and STZ + Myr. Myr (100 mg/kg/day) or vehicle was administered for 6 months. Kidneys were harvested and weighed at the end of the experiment. Hematoxylin and eosin staining and Masson’s trichrome staining were used to assess the morphology and fibrosis of the kidneys, respectively. Urinary albumin-to-creatinine ratio was used to test renal function. Western blotting was performed to determine oxidative-stress- or inflammation-associated signaling pathways. Real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of fibrosis or inflammatory cytokines at the message Ribonucleic Acid (mRNA) level. Results: In WT mice, Myr alleviated DM-induced renal dysfunction, fibrosis, and oxidative damage and enhanced the expression of Nrf2 and its downstream genes. After knockdown of Nrf2, Myr treatment partially but significantly mitigated DM-induced renal dysfunction and fibrosis, which might be associated with inhibition of the I-kappa-B (IκB)/nuclear factor-κB (NF-κB) (P65) signaling pathway. Conclusions: This study showed that Myr prevented DM-associated decreased expression of Nrf2 and inhibited IκB/NF-κB (P65) signaling pathway. Moreover, inhibition of IκB/NF-κB (P65) signaling pathway is independent of the regulation of Nrf2. Thus, Myr could be a potential treatment for preventing the development and progression of DM-associated kidney injuries and dysfunction.
Collapse
Affiliation(s)
- Zi-Jun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Ru Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Iin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zi-Han Zhai
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liu-Wei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Li
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cheng Zhang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Gao J, Song J, Du M, Mao X. Bovine α-lactalbumin hydrolysates (α-LAH) attenuate high-fat diet induced nonalcoholic fatty liver disease by modulating hepatic lipid metabolism in C57BL/6J mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
46
|
Li L, Fu J, Sun J, Liu D, Chen C, Wang H, Hou Y, Xu Y, Pi J. Is Nrf2-ARE a potential target in NAFLD mitigation? CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Terzo S, Caldara GF, Ferrantelli V, Puleio R, Cassata G, Mulè F, Amato A. Pistachio Consumption Prevents and Improves Lipid Dysmetabolism by Reducing the Lipid Metabolizing Gene Expression in Diet-Induced Obese Mice. Nutrients 2018; 10:nu10121857. [PMID: 30513740 PMCID: PMC6316241 DOI: 10.3390/nu10121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
Pistachios contain beneficial substances such as unsaturated fatty acids, phytosterols, and polyphenols. In the present study, we investigated if pistachio consumption is able to prevent or to revert hyperglycemia, dyslipidemia, hepatic steatosis, and adipose tissue morphological alterations caused by high fat diet (HFD) in the mouse. Moreover, the impact of pistachio intake on the mRNA expression of peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid transport proteins (FAT-P), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and sterol regulatory element-binding transcription factor-1c (SREBP-1c) in liver and adipose tissue was also analyzed. No change in body weight, food intake, and hyperglycemia was observed between mice consuming pistachios (HFD-P) and HFD mice. Pistachio intake was able to prevent but not to reverse HFD-induced hypertriglyceridemia. Cholesterol plasma levels, steatosis grading, body fat mass, and adipocyte size were significantly lower in HFD-P group compared to HFD in both prevention and reversal protocol. Pistachio-diet was able to prevent HFD-induced overexpression of PPAR-γ, FAS, and SCD1 in the liver and SREBP-1c, PPAR-γ, and FAT-P in adipose tissue. Similarly, HFD-P significantly ameliorated the expression levels of FAT-P and SCD1 in the liver and SREBP-1c, FAS, and SCD1 in adipose tissue of obese mice. The present study shows that pistachio consumption is able to prevent and to ameliorate obesity-related dysfunctions by positively modulating the expression of genes linked to lipid metabolism.
Collapse
Affiliation(s)
- Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Gaetano Felice Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, viale delle Scienze, Edificio 16, 90128 Palermo, Italy.
| |
Collapse
|
48
|
Sharanova NE, Vasil'ev AV. Postgenomic Properties of Natural Micronutrients. Bull Exp Biol Med 2018; 166:107-117. [PMID: 30450516 DOI: 10.1007/s10517-018-4298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Modern medical approaches to the therapy of various diseases, including cancer, are based on the use of toxic drugs. The unfavorable side effects of traditional medicine could be counterbalanced by addition of natural bioactive substances to conventional therapy due to their mild action on cells combined with the multitargeted effects. To elucidate the real mechanisms of their biological activity, versatile approaches including a number of "omics" such as genomics, transcriptomics, proteomics, and metabolomics are used. This review highlights inclusion of bioactive natural compounds into the therapy of chronic diseases from the viewpoint of modern omics-based nutritional biochemistry. The recently accumulated data argue for necessity to employ nutrigenetic and nutrimetabolomic analyses to prevent or diminish the risk of chronic diseases.
Collapse
Affiliation(s)
- N E Sharanova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - A V Vasil'ev
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
49
|
Role of p-MKK7 in myricetin-induced protection against intestinal ischemia/reperfusion injury. Pharmacol Res 2018; 129:432-442. [DOI: 10.1016/j.phrs.2017.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
|
50
|
Xia SF, Shao J, Zhao SY, Qiu YY, Teng LP, Huang W, Wang SS, Cheng XR, Jiang YY. Niga-ichigoside F1 ameliorates high-fat diet-induced hepatic steatosis in male mice by Nrf2 activation. Food Funct 2018; 9:906-916. [DOI: 10.1039/c7fo01051f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Niga-ichigoside F1 ameliorated high-fat diet-induced hepatic steatosis by increasing Nrf2 nuclear translocation to regulate lipid metabolism genes expression in livers of C57BL/6J mice.
Collapse
Affiliation(s)
- Shu-Fang Xia
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| | - Jing Shao
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| | - Shu-Ying Zhao
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yu-Yu Qiu
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| | - Li-Ping Teng
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| | - Wei Huang
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| | | | - Xiang-Rong Cheng
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Engineering Research Center for Functional Food
| | - Yu-Yu Jiang
- Wuxi School of Medicine
- Jiangnan University
- Wuxi
- China
| |
Collapse
|