1
|
Sánchez-Terrón G, Martínez R, Delgado J, Molina J, Estévez M. Hepatoprotective mechanisms of pomegranate bioactives on a murine models affected by NAFLD as analysed by MS-based proteomics: The mitochondria in the eye of the storm. Food Res Int 2024; 192:114769. [PMID: 39147495 DOI: 10.1016/j.foodres.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the mechanisms underlying the direct association between fructose consumption and the onset and progression of non-alcoholic fatty liver disease (NAFLD), as well as the high prevalence of metabolic syndrome (MetS), is of great importance for adopting potential nutritional strategies. Thus, an evaluation of the impact of sustained high fructose consumption on the liver physiology of Wistar rats was made. Moreover, the effectiveness of a dietary pomegranate-derived supplement (P) at counteracting fructose-induced liver injury was also assessed. For unveiling the underlying mechanisms, an untargeted proteomic analysis of the livers from nineteen Wistar rats fed on a basal commercial feed and supplemented with either drinking water (C) (n = 6), 30 % (w/v) fructose in drinking water (F) (n = 7) or 30 % (w/v) fructose solution plus 0.2 % (w/v) P (F+P) (n = 6) was assessed. Fructose intake severely increased the abundance of several energy-production related-proteins, such as fructose-bisphosphate aldolase or fatty acid synthase, among others, as well as diminished the amount of another ones, such as carnitine O-palmitoyl transferase or different subunits of acyl-coenzyme A oxidase. These changes could facilitate mitochondrial disturbances and oxidative stress. Regarding the hepatic proteome of F, P extract restored mitochondrial homeostasis and strengthened endogenous antioxidant mechanisms diminishing the amount of proteins involved in process that could increase the oxidative status, as well as increasing both the quantity of several proteins involved in proteasome functionality, as expressing changes in the amount of certain RNA-splicing related-proteins, regarding F proteome.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad de Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - Josué Delgado
- HISEALI Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Caceres 10003, Spain
| | - Javier Molina
- Gastroenterology and Hepatology, Hospital Universitario de Cáceres (HUC), Servicio Extremeño de Salud (SES), Junta de Extremadura, Caceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain.
| |
Collapse
|
2
|
Golzan SA, Movahedian M, Haghighat N, Asbaghi O, Hekmatdoost A. Association between non-nutritive sweetener consumption and liver enzyme levels in adults: a systematic review and meta-analysis of randomized clinical trials. Nutr Rev 2023; 81:1105-1117. [PMID: 36622225 DOI: 10.1093/nutrit/nuac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CONTEXT The use of non-nutritive sweeteners (NNSs) is dramatically increasing in food commodities, and their effects on biochemical parameters have been the subject of great controversy. Liver enzymes as markers of liver injury may be helpful measures of non-alcoholic fatty liver disease (NAFLD), but the outcomes of randomized controlled trials (RCTs) suggest their associations with NNSs are contentious. OBJECTIVE The current study was designed to provide a GRADE-assessed systematic review and meta-analysis of RCTs studying the consequences of NNS consumption on ALT, AST, and GGT concentrations (ie, the 3 main liver enzymes in adults). DATA SOURCES Scopus, PubMed, and EMBASE were searched for relevant studies up to April 2021, with no time and language limitations. DATA EXTRACTION Two independent researchers extracted information from qualified studies, and a third researcher rechecked it. DATA ANALYSIS Of 3212 studies, 10 studies that enrolled a total of 854 volunteers were included. A random-effects or fixed-effects model was utilized to calculate weighted mean differences (WMDs) and 95% confidence intervals (CIs). Heterogeneity between studies was evaluated using Cochran's Q test and quantified using the I2 statistic. The pooled results demonstrated that, compared with control groups, NNS intake led to nonsignificant reductions in ALT (WMD: -.78, 95% CI: -2.14, .57, P = .25) and GGT (WMD: -.21, 95% CI: -1.46, 1.04, P = .74). Also, a small nonsignificant increasing effect on AST level was found (WMD: .02, 95% CI: -1.26, 1.30, P = .97). NNS significantly reduced AST levels in type 2 diabetes patients when subgroup analyses were performed. Also, in trials with ≥24-week intervention or studies that utilized stevioside for intervention, a significant reducing effect on ALT level was observed. CONCLUSION The results of this study showed that NNS intake has no significant effect on liver enzyme levels in adults. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021250067.
Collapse
Affiliation(s)
- S Amirhossein Golzan
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Movahedian
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Haghighat
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hendriks AD, Veltien A, Voogt IJ, Heerschap A, Scheenen TWJ, Prompers JJ. Glucose versus fructose metabolism in the liver measured with deuterium metabolic imaging. Front Physiol 2023; 14:1198578. [PMID: 37465695 PMCID: PMC10351417 DOI: 10.3389/fphys.2023.1198578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Chronic intake of high amounts of fructose has been linked to the development of metabolic disorders, which has been attributed to the almost complete clearance of fructose by the liver. However, direct measurement of hepatic fructose uptake is complicated by the fact that the portal vein is difficult to access. Here we present a new, non-invasive method to measure hepatic fructose uptake and metabolism with the use of deuterium metabolic imaging (DMI) upon administration of [6,6'-2H2]fructose. Using both [6,6'-2H2]glucose and [6,6'-2H2]fructose, we determined differences in the uptake and metabolism of glucose and fructose in the mouse liver with dynamic DMI. The deuterated compounds were administered either by fast intravenous (IV) bolus injection or by slow IV infusion. Directly after IV bolus injection of [6,6'-2H2]fructose, a more than two-fold higher initial uptake and subsequent 2.5-fold faster decay of fructose was observed in the mouse liver as compared to that of glucose after bolus injection of [6,6'-2H2]glucose. In contrast, after slow IV infusion of fructose, the 2H fructose/glucose signal maximum in liver spectra was lower compared to the 2H glucose signal maximum after slow infusion of glucose. With both bolus injection and slow infusion protocols, deuterium labeling of water was faster with fructose than with glucose. These observations are in line with a higher extraction and faster turnover of fructose in the liver, as compared with glucose. DMI with [6,6'-2H2]glucose and [6,6'-2H2]fructose could potentially contribute to a better understanding of healthy human liver metabolism and aberrations in metabolic diseases.
Collapse
Affiliation(s)
- Arjan D. Hendriks
- Center of Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andor Veltien
- Department of Medical Imaging (Radiology), Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Arend Heerschap
- Department of Medical Imaging (Radiology), Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom W. J. Scheenen
- Department of Medical Imaging (Radiology), Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeanine J. Prompers
- Center of Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Effects of α-glyceryl monolaurate on growth, immune function, volatile fatty acids, and gut microbiota in broiler chickens. Poult Sci 2020; 100:100875. [PMID: 33516466 PMCID: PMC7936147 DOI: 10.1016/j.psj.2020.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to determine the effects of dietary addition of α-glyceryl monolaurate (α-GML) on growth performance, immune function, volatile fatty acids production and cecal microbiota in broiler chickens. A total of 480 1-day-old yellow-feathered broilers were randomly assigned in equal numbers to 4 dietary treatments: basal diet (NCO) or supplementations with 30 mg/kg bacitracin (ANT), 500 mg/kg α-GML, or 1,000 mg/kg α-GML (GML2). And, each treatment contained 8 replicates with 15 chickens per replicate. After supplementation with α-GML, the total BW gain and average daily weight gain of broilers increased significantly (P < 0.05) compared with the broilers on the NCO diet. Moreover, compared with the NCO group, higher levels of immune globulin M and immune globulin Y were observed in both GML groups and the ANT group. Concentrations of acetate, propionate, butyrate, valerate, and isovalerate in GML2 were significantly higher (P < 0.05) than those in the NCO group on day 28. However, acetate, propionate, valerate, and isovalerate concentrations were reduced to significantly (P < 0.05) lower than those in the NCO group on day 56. The abundance and diversity of microbiota were found to be improved in broilers that were supplemented with GML, using operational taxonomic unit and diversity analyses. Furthermore, the GML treatments increased favorable microbiota, particularly acid-producing bacteria, on day 28 and, also, reduced opportunistic pathogens, such as Alistipes tidjanibacter and Bacteroides dorei by day 56. These results suggest that α-GML supplementation modulates cecal microbiota and broiler immunity and improves volatile fatty acid levels during the early growth stages of broilers.
Collapse
|
5
|
Kakleas K, Christodouli F, Karavanaki K. Nonalcoholic fatty liver disease, insulin resistance, and sweeteners: a literature review. Expert Rev Endocrinol Metab 2020; 15:83-93. [PMID: 32212870 DOI: 10.1080/17446651.2020.1740588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Introduction: Sweeteners are substances used to replace sugar. They can either be chemically produced (artificial sweeteners) or extracted from plants (natural sweeteners). In the last two decades, there is an increased popularity in their role as sugar substitutes in individuals to promote weight loss or maintain glycemic control. However, despite their favorable effects, there is concern regarding their side effects and especially their influence in the development of nonalcoholic fatty liver disease (NAFLD).Areas covered: A comprehensive literature search was conducted on Medline including systematic reviews, longitudinal controlled studies, and retrospective cohort studies. We present an up-to-date systematic review of the current literature regarding the safety in artificial and natural sweeteners use as a means of weight loss or diabetes control.Expert opinion: Natural sweeteners have not been associated directly with NAFLD, and on the contrary, some, such as stevia, and trehalose, may have a protective effect. Rare sugars and polyols can be used safely and have significant benefits that include anti-oxidant effect and optimal glycemic control. Artificial sweeteners, due to their effect on NAFLD development and insulin resistance, are not indicated in patients with obesity or diabetes. Further studies in human subjects are required to verify the above findings.
Collapse
Affiliation(s)
- Konstantinos Kakleas
- Pediatric Department, Leicester Royal Infirmary, University Hospitals Leicester, Leicester, UK
| | - Foteini Christodouli
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, Athens, Greece
| | - Kyriaki Karavanaki
- Diabetes and Metabolism Clinic, 2nd Department of Pediatrics, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
6
|
Bueno-Hernández N, Vázquez-Frías R, Abreu y Abreu A, Almeda-Valdés P, Barajas-Nava L, Carmona-Sánchez R, Chávez-Sáenz J, Consuelo-Sánchez A, Espinosa-Flores A, Hernández-Rosiles V, Hernández-Vez G, Icaza-Chávez M, Noble-Lugo A, Romo-Romo A, Ruiz-Margaín A, Valdovinos-Díaz M, Zárate-Mondragón F. Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2019. [DOI: 10.1016/j.rgmxen.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Bueno-Hernández N, Vázquez-Frías R, Abreu Y Abreu AT, Almeda-Valdés P, Barajas-Nava LA, Carmona-Sánchez RI, Chávez-Sáenz J, Consuelo-Sánchez A, Espinosa-Flores AJ, Hernández-Rosiles V, Hernández-Vez G, Icaza-Chávez ME, Noble-Lugo A, Romo-Romo A, Ruiz-Margaín A, Valdovinos-Díaz MA, Zárate-Mondragón FE. Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2019; 84:492-510. [PMID: 31564473 DOI: 10.1016/j.rgmx.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023]
Abstract
The present review of noncaloric sweeteners (NCSs) by the Asociación Mexicana de Gastroenterología was carried out to analyze and answer some of the most frequent questions and concerns about NCS consumption in patients with gastrointestinal disorders, through a thorough review of the medical literature. A group of gastroenterologists and experts on nutrition, toxicology, microbiology, and endocrinology reviewed and analyzed the published literature on the topic. The working group formulated conclusions, based on the scientific evidence published, to give an opinion with respect to NCS ingestion. Current evidence does not confirm the carcinogenic potential of NCSs. However, the studies analyzed showed that saccharin could have a proinflammatory effect and that polyols can cause gastrointestinal symptoms and manifestations, depending on the dose and type of compound. The ingestion of xylitol, erythritol, sucralose, aspartame, acesulfame K, and saccharin could increase the secretion of the gastrointestinal hormones that regulate intestinal motility, and stevia and its derivatives could have a favorable effect on the percentage of liver fat. Caution should be taken in recommending aspartame consumption in patients with chronic liver disease because it reduces the ratio of branched-chain amino acids to aromatic amino acids. In addition, NCS ingestion could modify the composition of the intestinal microbiota, having an effect on gastrointestinal symptoms and manifestations. It is important to continue conducting causality studies on humans to be able to establish recommendations on NSC consumption.
Collapse
Affiliation(s)
- N Bueno-Hernández
- Dirección de Investigación, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México.
| | - R Vázquez-Frías
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - A T Abreu Y Abreu
- Gastroenterología, Hospital Ángeles Pedregal, Ciudad de México, México
| | - P Almeda-Valdés
- Departamento de Endocrinología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - L A Barajas-Nava
- Unidad de Investigación de Medicina Basada en Evidencia, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - J Chávez-Sáenz
- Consulta privada de Gastroenterología Pediátrica, Hospital Puerta de Hierro Andares, Zapopan, Jalisco, México
| | - A Consuelo-Sánchez
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - A J Espinosa-Flores
- Dirección de Investigación, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - V Hernández-Rosiles
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - G Hernández-Vez
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - M E Icaza-Chávez
- Consulta privada de Gastroenterología, Hospital Star Médica, Mérida, Yucatán, México
| | - A Noble-Lugo
- Departamento de Enseñanza e Investigación, Hospital Español de México, Ciudad de México, México
| | - A Romo-Romo
- Departamento de Endocrinología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - A Ruiz-Margaín
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M A Valdovinos-Díaz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - F E Zárate-Mondragón
- Servicio de Gastroenterología y Nutrición, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|
8
|
Silva JCP, Marques C, Martins FO, Viegas I, Tavares L, Macedo MP, Jones JG. Determining contributions of exogenous glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metab Eng 2019; 56:69-76. [PMID: 31473320 DOI: 10.1016/j.ymben.2019.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/26/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
The de novo synthesis of triglyceride (TG) fatty acids (FA) and glycerol can be measured with stable isotope tracers. However, these methods typically do not inform the contribution of a given substrate to specific pathways on these synthetic processes. We integrated deuterated water (2H2O) measurement of de novo lipogenesis (DNL) and glycerol-3-phosphate (GLY) synthesis from all substrates with a 13C nuclear magnetic resonance (NMR) method that quantifies TG FA and glycerol enrichment from a specific [U-13C]precursor. This allowed the [U-13C]precursor contribution to DNL and GLY to be estimated. We applied this method in mice to determine the contributions of fructose and glucose supplemented in the drinking water to DNL and GLY in liver, mesenteric adipose tissue (MAT) and subcutaneous adipose tissue (SCAT). In liver, fructose contributed significantly more to DNL of saturated fatty acids (SFA) and oleate as well as to GLY compared to glucose. Moreover, its contribution to SFA synthesis was significantly higher compared to that of oleate. MAT and SCAT had lower fractional rates of total DNL and GLY compared to liver and glucose was utilized more predominantly than fructose for TG synthesis in these tissues. This novel 2H2O/13C integrated method revealed for the first time, tissue specific selection of substrates for DNL, particularly fructose in regard to glucose in liver. Also, this approach was able to resolve the distribution of specific FAs into the TG sn2 and sn1,3 sites. This stable isotope integrated approach yielded information so far uncovered by other lipidomic tools and should powerfully assist in other nutritional, pathological or environmental contexts.
Collapse
Affiliation(s)
- João C P Silva
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Cátia Marques
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Fátima O Martins
- CEDOC-Chronic Diseases Research Center, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ivan Viegas
- CFE - Center for Functional Ecology, University of Coimbra, Apartado 3046, 3001-401, Coimbra, Portugal
| | - Ludgero Tavares
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Maria Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Portuguese Diabetes Association, Lisbon, Portugal; Department of Medical Sciences, Universidade Aveiro, Aveiro, Portugal.
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; APDP-Portuguese Diabetes Association, Lisbon, Portugal.
| |
Collapse
|
9
|
Green CH, Syn WK. Non-nutritive sweeteners and their association with the metabolic syndrome and non-alcoholic fatty liver disease: a review of the literature. Eur J Nutr 2019; 58:1785-1800. [PMID: 31119399 DOI: 10.1007/s00394-019-01996-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is increasing in incidence worldwide, paralleling epidemics in obesity and metabolic syndrome. Widely considered the hepatic manifestation of the metabolic syndrome, NAFLD is associated with significant morbidity, mortality, and increased healthcare costs. There is an abundance of data linking sugar-sweetened beverages, and fructose, in particular, to the metabolic syndrome and NAFLD. As a result, non-nutritive sweeteners (NNSs) are frequently substituted for sugar in drinks and a variety of foods. However, despite the widespread consumption of NNSs, there is growing concern about their impact on metabolic health. METHODS This review examines the experimental and clinical evidence on non-nutritive sweetener (NNS) consumption and features of the metabolic syndrome, including NAFLD. RESULTS Experimental animal studies show that NNS consumption can induce glucose intolerance, increased food consumption, and weight gain, with proposed mechanisms including altered gut microbiome, inhibition of protective intestinal enzymes, and increased appetite. The evidence from clinical studies is more controversial. Observational studies overwhelmingly show an association between NNS consumption and features of the metabolic syndrome, and this includes NAFLD when analyses are not adjusted for obesity. The evidence from randomized-controlled trials in humans is sparse and conflicting, and primarily evaluates weight-related outcomes. CONCLUSION Further research is urgently needed to evaluate NNS consumption and its relationship with NAFLD and the gut microbiome in humans.
Collapse
Affiliation(s)
- Caitlin H Green
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.,Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque County, UPV/EHU, Leioa, Spain
| |
Collapse
|
10
|
Wolters JC, Permentier HP, Bakker BM, Bischoff R. Targeted Proteomics to Study Mitochondrial Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:101-117. [PMID: 31452138 DOI: 10.1007/978-981-13-8367-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle.
Collapse
Affiliation(s)
- Justina C Wolters
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hjalmar P Permentier
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|