1
|
Iammarino M, Marino R, Nardelli V, Ingegno M, Albenzio M. Red Meat Heating Processes, Toxic Compounds Production and Nutritional Parameters Changes: What about Risk-Benefit? Foods 2024; 13:445. [PMID: 38338580 PMCID: PMC10855356 DOI: 10.3390/foods13030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The heating process is a crucial step that can lead to the formation of several harmful chemical compounds in red meat such as heterocyclic aromatic amines, N-Nitrosamines, polycyclic aromatic hydrocarbons and acrylamide. Meat has high nutritional value, providing essential amino acids, bioactive compounds and several important micronutrients which can also be affected by heating processes. This review aims to provide an updated overview of the effects of different heating processes on both the safety and nutritional parameters of cooked red meat. The most-used heating processes practices were taken into consideration in order to develop a risk-benefit scenario for each type of heating process and red meat.
Collapse
Affiliation(s)
- Marco Iammarino
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Rosaria Marino
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy;
| | - Valeria Nardelli
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Mariateresa Ingegno
- Department of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (V.N.); (M.I.)
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|
2
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
3
|
Latoch A, Głuchowski A, Czarniecka-Skubina E. Sous-Vide as an Alternative Method of Cooking to Improve the Quality of Meat: A Review. Foods 2023; 12:3110. [PMID: 37628109 PMCID: PMC10453940 DOI: 10.3390/foods12163110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sous-vide (SV) is a method of cooking previously vacuum-packed raw materials under strictly controlled conditions of time and temperature. Over the past few years, scientific articles have explored the physical, biochemical, and microbiological properties of SV cooking. In this review, we provide a critical appraisal of SV as an alternative method of meat cooking, including the types of methods, types of SV meat products, and effects of SV parameters on the meat quality and the mechanisms of transformation taking place in meat during SV cooking. Based on the available data, it can be concluded that most research on the SV method refers to poultry. The yield of the process depends on the meat type and characteristics, and decreases with increasing temperature, while time duration does not have an impact. Appropriate temperatures in this method make it possible to control the changes in products and affect their sensory quality. Vacuum conditions are given a minor role, but they are important during storage. The limited number of studies on the approximate composition of SV meat products makes it challenging to draw summarizing conclusions on this subject. The SV method allows for a higher microbiological quality of stored meat than conventional methods. The literature suggests that the SV method of preparing beef, pork, and poultry has many advantages.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Artur Głuchowski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
4
|
Lee SY, Kang JH, Lee DY, Jeong JW, Kim JH, Moon SS, Hur SJ. Methods for improving meat protein digestibility in older adults. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:32-56. [PMID: 37093926 PMCID: PMC10119465 DOI: 10.5187/jast.2023.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research
Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
5
|
Mitra B, Kristensen L, Lametsch R, Ruiz-Carrascal J. Cooking affects pork proteins in vitro rate of digestion due to different structural and chemical modifications. Meat Sci 2022; 192:108924. [PMID: 35878433 DOI: 10.1016/j.meatsci.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
The effect of thermal processing on the in vitro digestibility of pork proteins was studied. Raw samples were considered the control group, while the thermal treatments included 58, 80, 98 and 160 °C for 72 min, 118 °C for 8 min and 58 °C for 17 h, resembling a range of different cooking procedures. Samples were subsequently subjected to pepsin digestion at pH 3.00 in the gastric phase followed by trypsin and α-chymotrypsin at pH 8.00 in the intestinal phase. Pork cooked at 58 °C for 72 min had a significantly higher pepsin digestibility rate than meat cooked at 80 °C or 160 °C. The trend was similar in the intestinal phase, with samples cooked at 58 °C for 72 min having enhanced digestion rate over other treatments after 120 min of digestion. A PLS model pointed out to an inverse relationship between in vitro proteolysis rate and variables like Maillard reaction compounds or protein structural changes.
Collapse
Affiliation(s)
- Bhaskar Mitra
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Lars Kristensen
- Danish Meat Research Institute, Gregersensvej 9, 2630 Taastrup, Denmark
| | - Rene Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Jorge Ruiz-Carrascal
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark; Institute of Meat and Meat Products, University of Extremadura, Av. Ciencias s/n, 10003 Caceres, Spain.
| |
Collapse
|
6
|
Kathuria D, Dhiman AK, Attri S. Sous vide, a culinary technique for improving quality of food products: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
8
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr Rev Food Sci Food Saf 2021; 20:4511-4548. [PMID: 34350699 DOI: 10.1111/1541-4337.12802] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, Lincoln, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, India
| |
Collapse
|
9
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Non-thermal processing has an impact on the digestibility of the muscle proteins. Crit Rev Food Sci Nutr 2021; 62:7773-7800. [PMID: 33939555 DOI: 10.1080/10408398.2021.1918629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, India
| |
Collapse
|
10
|
Zavadlav S, Blažić M, Van de Velde F, Vignatti C, Fenoglio C, Piagentini AM, Pirovani ME, Perotti CM, Bursać Kovačević D, Putnik P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020; 9:E1537. [PMID: 33113877 PMCID: PMC7693970 DOI: 10.3390/foods9111537] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Sous-vide is a technique of cooking foods in vacuum bags under strictly controlled temperature, offering improved taste, texture and nutritional values along with extended shelf life as compared to the traditional cooking methods. In addition to other constituents, vegetables and seafood represent important sources of phytochemicals. Thus, by applying sous-vide technology, preservation of such foods can be prolonged with almost full retention of native quality. In this way, sous-vide processing meets customers' growing demand for the production of safer and healthier foods. Considering the industrial points of view, sous-vide technology has proven to be an adequate substitute for traditional cooking methods. Therefore, its application in various aspects of food production has been increasingly researched. Although sous-vide cooking of meats and vegetables is well explored, the challenges remain with seafoods due to the large differences in structure and quality of marine organisms. Cephalopods (e.g., squid, octopus, etc.) are of particular interest, as the changes of their muscular physical structure during processing have to be carefully considered. Based on all the above, this study summarizes the literature review on the recent sous-vide application on vegetable and seafood products in view of production of high-quality and safe foodstuffs.
Collapse
Affiliation(s)
- Sandra Zavadlav
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47 000 Karlovac, Croatia;
| | - Marijana Blažić
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47 000 Karlovac, Croatia;
| | - Franco Van de Velde
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Charito Vignatti
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Cecilia Fenoglio
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - Andrea M. Piagentini
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - María Elida Pirovani
- Facultad de Ingeniería Química, Instituto de Tecnología de Alimentos, Universidad Nacional del Litoral (FIQ, UNL), 1º de Mayo 3250, Santa Fe 3000, Argentina; (F.V.d.V.); (C.V.); (C.F.); (A.M.P.); (M.E.P.)
| | - Cristina M. Perotti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina;
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (INLAIN), Universidad Nacional del Litoral (FIQ, UNL/CONICET), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Greenbird Medical Inc., Trg dr. Žarka Dolinara 18, 48 000 Koprivnica, Croatia
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
11
|
Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020; 9:E1416. [PMID: 33036478 PMCID: PMC7601710 DOI: 10.3390/foods9101416] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
This review describes the effects of processing and preservation technologies on sensory and nutritional quality of meat products. Physical methods such as dry aging, dry curing, high pressure processing (HPP), conventional cooking, sous-vide cooking and 3D printing are discussed. Chemical and biochemical methods as fermentation, smoking, curing, marination, and reformulation are also reviewed. Their technical limitations, due to loss of sensory quality when nutritional value of these products is improved, are presented and discussed. There are several studies focused either on the nutritional or sensorial quality of the processed meat products, but more studies with an integration of the two aspects are necessary. Combination of different processing and preservation methods leads to better results of sensory quality; thus, further research in combinations of different techniques are necessary, such that the nutritional value of meat is not compromised.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain;
| | - Rasmi Janardhanan
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - Francisco C. Ibañez
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - María José Beriain
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| |
Collapse
|