1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Kapoor S, Damiani E, Wang S, Dharmanand R, Tripathi C, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. BRD9 Inhibition by Natural Polyphenols Targets DNA Damage/Repair and Apoptosis in Human Colon Cancer Cells. Nutrients 2022; 14:nu14204317. [PMID: 36297001 PMCID: PMC9610492 DOI: 10.3390/nu14204317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.
Collapse
Affiliation(s)
- Sabeeta Kapoor
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ravirajan Dharmanand
- Center for Infectious & Inflammatory Diseases, Texas A&M Health, Houston, TX 77030, USA
| | - Chakrapani Tripathi
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | | | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| | - Roderick Hugh Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| |
Collapse
|
3
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
4
|
Santos JLD. Innovation in Pharmaceutical Assistance. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
5
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
6
|
Humbeck L, Pretzel J, Spitzer S, Koch O. Discovery of an Unexpected Similarity in Ligand Binding between BRD4 and PPARγ. ACS Chem Biol 2021; 16:1255-1265. [PMID: 34180651 DOI: 10.1021/acschembio.1c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Knowledge about interrelationships between different proteins is crucial in fundamental research for the elucidation of protein networks and pathways. Furthermore, it is especially critical in chemical biology to identify further key regulators of a disease and to take advantage of polypharmacology effects. Here, we present a new concept that combines a scaffold-based analysis of bioactivity data with a subsequent screening to identify novel inhibitors for a protein target of interest. The initial scaffold-based analysis revealed a flavone-like scaffold that can be found in ligands of different unrelated proteins indicating a similarity in ligand binding. This similarity was further investigated by testing compounds on bromodomain-containing protein 4 (BRD4) that were similar to known ligands of the other identified protein targets. Several new BRD4 inhibitors were identified and proven to be validated hits based on orthogonal assays and X-ray crystallography. The most important discovery was an unexpected relationship between BRD4 and peroxisome-proliferator activated receptor gamma (PPARγ). Both proteins share binding site similarities near a common hydrophobic subpocket which should allow the design of a polypharmacology-based ligand targeting both proteins. Such dual-BRD4-PPARγ modulators open up new therapeutic opportunities, because both are important drug targets for cancer therapy and many more important diseases. Thereon, a complex structure of sulfasalazine was obtained that involves two bromodomains and could be a potential starting point for the design of a bivalent BRD4 inhibitor.
Collapse
Affiliation(s)
- Lina Humbeck
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Jette Pretzel
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Saskia Spitzer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Damiani E, Duran MN, Mohan N, Rajendran P, Dashwood RH. Targeting Epigenetic 'Readers' with Natural Compounds for Cancer Interception. J Cancer Prev 2020; 25:189-203. [PMID: 33409252 PMCID: PMC7783241 DOI: 10.15430/jcp.2020.25.4.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Munevver N. Duran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Shi Y, Liu J, Zhao Y, Cao J, Li Y, Guo F. Bromodomain-Containing Protein 4: A Druggable Target. Curr Drug Targets 2020; 20:1517-1536. [PMID: 31215391 DOI: 10.2174/1574885514666190618113519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extraterminal family. BRD4 inhibitors can regulate acetylated lysine and form protein complexes that initiate transcriptional programs as an epigenetic regulator of the histone code. BRD4 was initially considered to be one of the most promising targets for combating malignant tumors. However, many recent studies have shown that BRD4 plays a crucial role in various kinds of diseases, including cancer, coronary heart disease, neurological disorder, and obesity. Currently, several BRD4 inhibitors are undergoing clinical trials. A search for new BRD4 inhibitors appears to be of great utility for developing novel drugs. In this mini-review, we highlight the inhibitors of BRD4 from natural products and synthesized sources, as well as their applications in cancer, glucolipid metabolism, inflammation, neuronal stimulation activation, human immunodeficiency virus and renal fibrosis.
Collapse
Affiliation(s)
- Yingying Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jiaoxian Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| |
Collapse
|
9
|
Martín-Hernández R, Reglero G, Ordovás JM, Dávalos A. NutriGenomeDB: a nutrigenomics exploratory and analytical platform. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5607505. [PMID: 31665759 DOI: 10.1093/database/baz097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Habitual consumption of certain foods has shown beneficial and protective effects against multiple chronic diseases. However, it is not clear by which molecular mechanisms they may exert their beneficial effects. Multiple -omic experiments available in public databases have generated gene expression data following the treatment of human cells with different food nutrients and bioactive compounds. Exploration of such data in an integrative manner offers excellent possibilities for gaining insights into the molecular effects of food compounds and bioactive molecules at the cellular level. Here we present NutriGenomeDB, a web-based application that hosts manually curated gene sets defined from gene expression signatures, after differential expression analysis of nutrigenomics experiments performed on human cells available in the Gene Expression Omnibus (GEO) repository. Through its web interface, users can explore gene expression data with interactive visualizations. In addition, external gene signatures can be connected with nutrigenomics gene sets using a gene pattern-matching algorithm. We further demonstrate how the application can capture the primary molecular mechanisms of a drug used to treat hypertension and thus connect its mode of action with hosted food compounds.
Collapse
Affiliation(s)
- Roberto Martín-Hernández
- Bioinformatics and Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, Madrid 28049, Spain
| | - Guillermo Reglero
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, CEI UAM+CSIC, C/ Nicolas Cabrera 9, Madrid 28049, Spain.,Laboratory of Food Products for Precision Nutrition, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, Madrid 28049, Spain
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.,Laboratory of Nutritional Genomics, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, Madrid 280149, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Canto Blanco 8, Madrid 28049, Spain
| |
Collapse
|
10
|
Nguyen HHT, Yeoh LM, Chisholm SA, Duffy MF. Developments in drug design strategies for bromodomain protein inhibitors to target Plasmodium falciparum parasites. Expert Opin Drug Discov 2019; 15:415-425. [PMID: 31870185 DOI: 10.1080/17460441.2020.1704251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Bromodomains (BRDs) bind to acetylated lysine residues, often on histones. The BRD proteins can contribute to gene regulation either directly through enzymatic activity or indirectly through recruitment of chromatin-modifying complexes or transcription factors. There is no evidence of direct orthologues of the Plasmodium falciparum BRD proteins (PfBDPs) outside the apicomplexans. PfBDPs are expressed during the parasite's life cycle in both the human host's blood and in the mosquito. PfBDPs could also prove to be promising targets for novel antimalarials, which are urgently required to address increasing drug resistance.Areas covered: This review discusses recent studies of the biology of PfBDPs, current target-based strategies for PfBDP inhibitor discovery, and different approaches to the important step of validating the specificity of hit compounds for PfBDPs.Expert opinion: The novelty of Plasmodium BRDs suggests that they could be targeted by selective compounds. Chemical series that showed promise in screens against human BRDs could be leveraged to create targeted compound libraries, as could hits from P. falciparum phenotypic screens. These targeted libraries and hits could be screened in target-based strategies aimed at discovery and optimization of novel inhibitors of PfBDPs. A key task for the field is to generate parasite assays to validate the hit compounds' specificity for PfBDPs.
Collapse
Affiliation(s)
- Hanh H T Nguyen
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Lee M Yeoh
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Scott A Chisholm
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Cozza G, Zonta F, Dalle Vedove A, Venerando A, Dall'Acqua S, Battistutta R, Ruzzene M, Lolli G. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin. FEBS J 2019; 287:1850-1864. [DOI: 10.1111/febs.15111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/01/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Giorgio Cozza
- Department of Molecular Medicine University of Padua Padua Italy
| | - Francesca Zonta
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science University of Padua Legnaro Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences University of Padua Padua Italy
| | - Roberto Battistutta
- Department of Chemical Sciences University of Padua Padua Italy
- Institute of Biomolecular Chemistry National Research Council (CNR) Padua Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| |
Collapse
|
12
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Al-Suhaimi E, Ravinayagam V, Jermy BR, Mohamad T, Elaissari A. Protein/ Hormone Based Nanoparticles as Carriers for Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:444-456. [PMID: 30836918 DOI: 10.2174/1568026619666190304152320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/02/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In this review, protein-protein interactions (PPIs) were defined, and their behaviors in normal in disease conditions are discussed. Their status at nuclear, molecular and cellular level was underscored, as for their interference in many diseases. Finally, the use of protein nanoscale structures as possible carriers for drugs targeting PPIs was highlighted. OBJECTIVE The objective of this review is to suggest a novel approach for targeting PPIs. By using protein nanospheres and nanocapsules, a promising field of study can be emerged. METHODS To solidify this argument, PPIs and their biological significance was discussed, same as their role in hormone signaling. RESULTS We shed the light on the drugs that targets PPI and we suggested the use of nanovectors to encapsulate these drugs to possibly achieve better results. CONCLUSION Protein based nanoparticles, due to their advantages, can be suitable carriers for drugs targeting PPIs. This can open a new opportunity in the emerging field of multifunctional therapeutics.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Vijaya Ravinayagam
- Deanship of Scientific Research & Nanomedicine Research Department, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - B. Rabindran Jermy
- Nanomedicine Research Department, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Tarhini Mohamad
- University Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F- 69622 Lyon, France
| | - Abdelhamid Elaissari
- University Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F- 69622 Lyon, France
| |
Collapse
|
14
|
Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, Ahmad A. Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol's Anticancer Activity. MEDICINES 2019; 6:medicines6010024. [PMID: 30781847 PMCID: PMC6473688 DOI: 10.3390/medicines6010024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023]
Abstract
Numerous studies support the potent anticancer activity of resveratrol and its regulation of key oncogenic signaling pathways. Additionally, the activation of sirtuin 1, a deacetylase, by resveratrol has been known for many years, making resveratrol perhaps one of the earliest nutraceuticals with associated epigenetic activity. Such epigenetic regulation by resveratrol, and the mechanism thereof, has attracted much attention in the past decade. Focusing on methylation and acetylation, the two classical epigenetic regulations, we showcase the potential of resveratrol as an effective anticancer agent by virtue of its ability to induce differential epigenetic changes. We discuss the de-repression of tumor suppressors such as BRCA-1, nuclear factor erythroid 2-related factor 2 (NRF2) and Ras Associated Domain family-1α (RASSF-1α) by methylation, PAX1 by acetylation and the phosphatase and tensin homologue (PTEN) by both methylation and acetylation, in addition to the epigenetic regulation of oncogenic NF-κB and STAT3 signaling by resveratrol. Further, we evaluate the literature supporting the potentiation of HDAC inhibitors and the inhibition of DNMTs by resveratrol in different human cancers. This discussion underlines a robust epigenetic activity of resveratrol that warrants further evaluation, particularly in clinical settings.
Collapse
Affiliation(s)
- Mohd Farhan
- College of Basic Sciences, King Faisal University, Hofuf 400-Al Ahsa-31982, Saudi Arabia.
| | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Mohd Faisal
- Department of Psychiatry, University Hospital Limerick, Limerick V94 T9PX, Ireland.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Bernhard Biersack
- Organic Chemistry Laboratory, Department of Chemistry, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|