1
|
Anti-inflammatory diets reduce the risk of excessive gestational weight gain in urban South Africans from the Soweto First 1000-Day Study (S1000). Eur J Nutr 2022; 61:3929-3941. [PMID: 35764725 PMCID: PMC9244370 DOI: 10.1007/s00394-022-02931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
Purpose To (i): examine whether maternal dietary inflammation assessed using the dietary inflammatory index (DII) is associated with gestational weight gain (GWG) and delivery outcomes in urban South African women from the Soweto First 1000-Day Study (S1000); and (ii): explore whether serum high-sensitivity c-reactive protein (hs-CRP) levels mediate these associations. Methods Energy-adjusted-DII (E-DII™) scores were calculated for 478 pregnant women using a quantitative food frequency questionnaire. GWG (kg/week) was assessed via anthropometry and hs-CRP concentrations were assessed in a sub-sample at < 14 (n = 263) and at 24–28 (n = 270) weeks gestational age. Multivariable linear and logistic regression models were used to examine associations between maternal E-DII scores, GWG, hs-CRP concentrations, and delivery outcomes. Results Positive vs. negative E-DII scores were associated with an increased odds of excessive weight gain (OR (95% CI): 2.23 (1.20; 4.14); P = 0.01) during pregnancy. Higher hs-CRP concentrations in the first trimester were associated with lower weight-for-length z-score (β (95% CI): −0.06 (−0.11; −0.01) per 1 mg/l hs-CRP; P = 0.02) and a reduction in odds of a large-for-gestational age delivery (OR (95% CI): 0.66 (0.47; 0.94); P = 0.02). Higher hs-CRP concentrations in the second trimester were associated with an increased odds of delivering preterm (OR (95% CI): 1.16 (1.01; 1.32); P = 0.03). Conclusions Consumption of an anti-inflammatory diet during pregnancy reduced the risk of excessive GWG in a rapidly urbanising setting (Soweto, South Africa), where obesity prevalence rates are high. Further research is needed to better understand how maternal diet may ameliorate the effects of maternal adiposity on inflammatory milieu and fetal programming. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02931-x.
Collapse
|
2
|
Targets and Potential Mechanism of Scutellaria baicalensis in Treatment of Primary Hepatocellular Carcinoma Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8762717. [PMID: 35190740 PMCID: PMC8858046 DOI: 10.1155/2022/8762717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 12/08/2022]
Abstract
Objective To analyze the target and potential mechanism of Scutellaria baicalensis (SB) in the treatment of HCC based on bioinformatics, so as to provide suggestions for the diagnosis, treatment, and drug development of hepatocellular carcinoma (HCC). Methods The regulated gene targets of SB were screened by gene expression pattern clustering and differential analysis of gene expression data of HepG2 cells treated with SB at 0 h, 1 h, 3 h, 6 h, 12 h, and 24 h. The module genes related to HCC were identified by the weighted gene coexpression network analysis (WGCNA). KEGG and GO enrichment were used to analyze the molecular function and structure of the module, and GSEA was used to evaluate the different functional pathways between normal people and patients with HCC. Then, the module gene was used for univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to build a prognostic model. The protein-protein interaction network (PPI) was used to analyze the core genes regulated by SB (CGRSB) of the module, and the survival curve revealed the CGRSB impact on patient survival. The CIBERSORT algorithm combined with correlation analysis to explore the relationship between CGRSB and immune infiltration. Finally, the single-cell sequencing technique was used to analyze the distribution of CGRSB at the cellular level. Results SB could regulate 903 genes, of which 234 were related to the occurrence of HCC. The prognosis model constructed by these genes has a good effect in evaluating the survival of patients. KEGG and GO enrichment analysis showed that the regulation of SB on HCC mainly focused on some cell proliferation, apoptosis, and immune-related functions. GSEA enrichment analysis showed that these functions are related to the occurrence of HCC. A total of 24 CGRSB were obtained after screening, of which 13 were significantly related to survival, and most of them were unfavorable factors for patient survival. The correlation analysis of gene expression showed that most of CGRSB was significantly correlated with T cells, macrophages, and other functions. The results of single-cell analysis showed that the distribution of CGRSB in macrophages was the most. Conclusion SB has high credibility in the treatment of HCC, such as CDK2, AURKB, RRM2, CENPE, ESR1, and PRIM2. These targets can be used as potential biomarkers for clinical diagnosis. The research also shows that the p53 signal pathway, MAPK signal pathway, apoptosis pathway, T cell receptor pathway, and macrophage-mediated tumor immunity play the most important role in the mechanism of SB in treating HCC.
Collapse
|
3
|
Jaskiw GE, Xu D, Obrenovich ME, Donskey CJ. Small phenolic and indolic gut-dependent molecules in the primate central nervous system: levels vs. bioactivity. Metabolomics 2022; 18:8. [PMID: 34989922 DOI: 10.1007/s11306-021-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A rapidly growing body of data documents associations between disease of the brain and small molecules generated by gut-microbiota (GMB). While such metabolites can affect brain function through a variety of mechanisms, the most direct action would be on the central nervous system (CNS) itself. OBJECTIVE Identify indolic and phenolic GMB-dependent small molecules that reach bioactive concentrations in primate CNS. METHODS We conducted a PubMed search for metabolomic studies of the primate CNS [brain tissue or cerebrospinal fluid (CSF)] and then selected for phenolic or indolic metabolites that (i) had been quantified, (ii) were GMB-dependent. For each chemical we then conducted a search for studies of bioactivity conducted in vitro in human cells of any kind or in CNS cells from the mouse or rat. RESULTS 36 metabolites of interests were identified in primate CNS through targeted metabolomics. Quantification was available for 31/36 and in vitro bioactivity for 23/36. The reported CNS range for 8 metabolites 2-(3-hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 3-(3-hydroxyphenyl)propanoic acid, (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid [caffeic acid], 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-acetamido-3-(1H-indol-3-yl)propanoic acid [N-acetyltryptophan], 1H-indol-3-yl hydrogen sulfate [indoxyl-3-sulfate] overlapped with a bioactive concentration. However, the number and quality of relevant studies of CNS neurochemistry as well as of bioactivity were highly limited. Structural isomers, multiple metabolites and potential confounders were inadequately considered. CONCLUSION The potential direct bioactivity of GMB-derived indolic and phenolic molecules on primate CNS remains largely unknown. The field requires additional strategies to identify and prioritize screening of the most promising small molecules that enter the CNS.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Dongyan Xu
- Psychiatry Service 116(A), Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), 10701 East Blvd., Cleveland, OH, 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, OH, USA
- Research Service, VANEOHS, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center (GRECC), VANEOHS, Cleveland, OH, USA
| |
Collapse
|
4
|
Minami M, Konishi T, Takase H, Makino T. Shin'iseihaito (Xinyiqingfeitang) extract ameliorates ovalbumin-induced murine allergic rhinitis by regulating cytokines. J Nat Med 2021; 76:244-253. [PMID: 34792735 DOI: 10.1007/s11418-021-01585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Shin'iseihaito (Xinyiqingfeitang) is a formula of traditional Japanese Kampo medicine and traditional Chinese medicine (TCM) and for chronic sinusitis. However, the precise action mechanism has been unknown. We examined the effect of shin'iseihaito extract (SSHT) on murine allergic rhinitis model using ovalbumin (OVA). We decocted the mixture of 9 crude drugs in water to prepare SSHT. SSHT (20 times amount of human dose) was orally administered to mice treated with OVA. After mice were sacrificed on day 28, immunoglobulin (Ig) E, interleukin (IL)-4, IL-13, interferon (IFN)-γ, and thymic stromal lymphopoietin (TSLP) levels in nasal lavage fluid samples were measured by enzyme-linked immunosorbent assay (ELISA). The pathological tissue sections from the nasal epithelial mucosa were histopathologically investigated by optical and scanning electron microscopies. We also investigated the effects of modified SSHTs prepared by removing one crude drug from shin'iseihaito to clarify the active ingredients. SSHT suppressed IgE, IL-4, IL-13, and TSLP levels, while increased the IFN-γ levels in OVA-induced allergic mice. Sensitization with OVA resulted in an increase in eosinophilia and goblet cells in murine nasal cavity tissue in comparison with those in untreated group, however, those were significantly reduced by the treatment with SSHT. The extracts of 8 crude drug's mixtures except for the removal of Gypsum fibrosum (GF) from shin'iseihaito counteracted on the suppressive effects of SSHT on IgE, IL-4, IL-13, and TSLP levels in nasal lavage fluid. Our result demonstrated that SSHT may contribute to inhibit the exacerbation of OVA-induced murine allergic rhinitis by regulating cytokines, and the components except for GF contributed anti-allergic effect of shin'iseihaito.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Toru Konishi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
5
|
Azman S, Sekar M, Bonam SR, Gan SH, Wahidin S, Lum PT, Dhadde SB. Traditional Medicinal Plants Conferring Protection Against Ovalbumin-Induced Asthma in Experimental Animals: A Review. J Asthma Allergy 2021; 14:641-662. [PMID: 34163178 PMCID: PMC8214026 DOI: 10.2147/jaa.s296391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/16/2021] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract in which the numerous immune cells, including eosinophils, neutrophils, macrophages, T-lymphocytes, mast cells and epithelial lining play key roles. The numerous anti-asthmatic drugs are available in modern medicine to treat asthma, but they have several disadvantages, including side effects and the cost variations, which compromise treatment compliance. The literature review reveals that traditional herbal medicines have good potential as alternative treatment and management for asthma. However, communities hesitated to use the traditional herbal medicines due to lack of established mechanism of action about their anti-asthmatic potential. The present review aimed to summarise the information stated in the literature about the potential effect of traditional medicinal plants (TMPs) conferring protection against ovalbumin (OVA)-induced asthma model. The literature search was conducted in database like PubMed, Scopus, Google Scholar and ScienceDirect. After screening through the literature from 2011 to date, a total of 27 medicinal plants and two polyherbal extracts have been reported to be used as traditional herbal medicines and also utilised to be tested against OVA-induced asthma, were included. We found them to be an important alternative source of treatment for asthma, since some have comparable efficacies with drugs commonly used in the modern system against asthma. All the reported medicinal plants confirmed their traditional use against asthma or its related inflammation. The present review provides faith in traditional information and also offers new insight into the potential of natural products against asthma.
Collapse
Affiliation(s)
- Shazalyana Azman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia.,Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université De Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway Selangor Darul Ehsan, 47500, Malaysia
| | - Suzana Wahidin
- Bioengineering and Technology Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | |
Collapse
|
6
|
Cheng Y, Liu Y, Tan J, Sun Y, Guan W, Liu Y, Yang B, Kuang H. Spleen and thymus metabolomics strategy to explore the immunoregulatory mechanism of total withanolides from the leaves of Datura metel L. on imiquimod-induced psoriatic skin dermatitis in mice. Biomed Chromatogr 2020; 34:e4881. [PMID: 32396241 DOI: 10.1002/bmc.4881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Our previous work demonstrated that total withanolides of Datura metel L. leaves (TWD) exhibited excellent therapeutic effects on psoriasis. However, current knowledge of its mechanisms is incomplete. In this study, integrated spleen and thymus untargeted metabolomics were used to analyze the changes in endogenous metabolites underlying the immunosuppressive activity of TWD on psoriasis animal models induced by imiquimod. The results suggested that TWD treatment markedly attenuated imiquimod-induced psoriasis and showed significant immunosuppressive activity as evidenced by decreased elevation index of spleen and thymus. Meanwhile, TWD significantly reversed the elevation of immunoregulatory factors, including IL-10, IL-17, IL-22 and IL-23. Multivariate trajectory analysis revealed that TWD treatment could restore the psoriasis-disturbed spleen and thymus metabolite profiles towards the normal metabolic status. A total of 25 and 27 metabolites associated with the immunomodulatory effects for which levels changed markedly upon treatment have been identified in spleen and thymus, respectively. These differential metabolites were mainly involved in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and lipid metabolism. Our investigation provided a holistic view of TWD for intervention in psoriasis through immunoregulation and provided further scientific information in vivo about a clinical value of TWD for psoriasis.
Collapse
Affiliation(s)
- Yangang Cheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jinyan Tan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
7
|
The involvement of NF- κB/P38 pathways in Scutellaria baicalensis extracts attenuating of Escherichia coli K88-induced acute intestinal injury in weaned piglets. Br J Nutr 2019; 122:152-161. [PMID: 31006408 DOI: 10.1017/s0007114519000928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study was carried out to evaluate the effect of dietary supplementation of Scutellaria baicalensis extracts (SBE) on intestinal health in terms of morphology, barrier integrity and immune responses in weaned piglets challenged with Escherichia coli K88. A total of seventy-two weaned piglets were assigned into two groups to receive a basal diet without including antibiotic additives or the basal diet supplemented 1000 mg SBE/kg diet for 14 d. On day 15, twelve healthy piglets from each group were selected to expose to oral administration of either 10 ml 1 × 109 colony-forming units of E. coli K88 or the vehicle control. After 48 h of E.coli K88 challenge, blood was sampled, and then all piglets were killed humanely for harvesting jejunal and ileal samples. Dietary supplementation of SBE significantly decreased diarrhoea frequency and improved feed conversion ratio (P < 0·05). SBE supplementation to E.coli K88-challenged piglets improved villous height and villous height/crypt depth (P < 0·05), recovered the protein expression of occludin and zonula occludens-2 in both the jejunum and ileum (P < 0·05), and mitigated the increases in plasma IL-1β, TNF-α, IL-6, IgA and IgG (P < 0·05). Meanwhile, dietary SBE effectively inhibited the stimulation of NF-κB, P38 and TNF-α as well as IL-1β in the small intestine of piglets challenged by E. coli K88 and prevented the activation of NF-κB/P38 signalling pathways (P < 0·05). Collectively, SBE supplementation can potently attenuate diarrhoea in weaning piglets and decrease inflammatory cytokine expressions through inhibiting the NF-κB and P38 signalling pathways.
Collapse
|
8
|
Sim LY, Abd Rani NZ, Husain K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol 2019; 10:677. [PMID: 31275149 PMCID: PMC6594199 DOI: 10.3389/fphar.2019.00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
The prevalence of allergic diseases such as asthma, allergic rhinitis, food allergy and atopic dermatitis has increased dramatically in recent decades. Conventional therapies for allergy can induce undesirable effects and hence patients tend to seek alternative therapies like natural compounds. Considering the fact above, there is an urgency to discover potential medicinal plants as future candidates in the development of novel anti-allergic therapeutic agents. The Lamiaceae family, or mint family, is a diverse plant family which encompasses more than 7,000 species and with a cosmopolitan distribution. A number of species from this family has been widely employed as ethnomedicine against allergic inflammatory skin diseases and allergic asthma in traditional practices. Phytochemical analysis of the Lamiaceae family has reported the presence of flavonoids, flavones, flavanones, flavonoid glycosides, monoterpenes, diterpenes, triterpenoids, essential oil and fatty acids. Numerous investigations have highlighted the anti-allergic activities of Lamiaceae species with their active principles and crude extracts. Henceforth, this review has the ultimate aim of compiling the up-to-date (2018) findings of published scientific information about the anti-allergic activities of Lamiaceae species. In addition, the botanical features, medicinal uses, chemical constituents and toxicological studies of Lamiaceae species were also documented. The method employed for data collection in this review was mainly the exploration of the PubMed, Ovid and Scopus databases. Additional research studies were obtained from the reference lists of retrieved articles. This comprehensive summarization serves as a useful resource for a better understanding of Lamiaceae species. The anti-allergic mechanisms related to Lamiaceae species are also reviewed extensively which aids in future exploration of the anti-allergic potential of Lamiaceae species.
Collapse
Affiliation(s)
- Lee Yen Sim
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|