1
|
Buelow E, Dauga C, Carrion C, Mathé-Hubert H, Achaibou S, Gaschet M, Jové T, Chesneau O, Kennedy SP, Ploy MC, Da Re S, Dagot C. Hospital and urban wastewaters shape the matrix and active resistome of environmental biofilms. WATER RESEARCH 2023; 244:120408. [PMID: 37678036 DOI: 10.1016/j.watres.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Understanding the dynamics of antibiotic resistance gene (ARG) transfer and dissemination in natural environments remains challenging. Biofilms play a crucial role in bacterial survival and antimicrobial resistance (AMR) dissemination in natural environments, particularly in aquatic systems. This study focused on hospital and urban wastewater (WW) biofilms to investigate the potential for ARG dissemination through mobile genetic elements (MGEs). The analysis included assessing the biofilm extracellular polymeric substances (EPS), microbiota composition as well as metatranscriptomic profiling of the resistome and mobilome. We produced both in vitro and in situ biofilms and performed phenotypic and genomic analyses. In the in vitro setup, untreated urban and hospital WW was used to establish biofilm reactors, with ciprofloxacin added as a selective agent at minimal selective concentration. In the in situ setup, biofilms were developed directly in hospital and urban WW pipes. We first showed that a) the composition of EPS differed depending on the growth environment (in situ and in vitro) and the sampling origin (hospital vs urban WW) and that b) ciprofloxacin impacted the composition of the EPS. The metatranscriptomic approach showed that a) expression of several ARGs and MGEs increased upon adding ciprofloxacin for biofilms from hospital WW only and b) that the abundance and type of plasmids that carried individual or multiple ARGs varied depending on the WW origins of the biofilms. When the same plasmids were present in both, urban and hospital WW biofilms, they carried different ARGs. We showed that hospital and urban wastewaters shaped the structure and active resistome of environmental biofilms, and we confirmed that hospital WW is an important hot spot for the dissemination and selection of antimicrobial resistance. Our study provides a comprehensive assessment of WW biofilms as crucial hotspots for ARG transfer. Hospital WW biofilms exhibited distinct characteristics, including higher eDNA abundance and expression levels of ARGs and MGEs, highlighting their role in antimicrobial resistance dissemination. These findings emphasize the importance of understanding the structural, ecological, functional, and genetic organization of biofilms in anthropized environments and their contribution to antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Elena Buelow
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France; CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Catherine Dauga
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France; Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Claire Carrion
- CNRS, INSERM, CHU Limoges, BISCEm, UAR 2015, US 42, Univ. Limoges, F-87000, Limoges, France
| | - Hugo Mathé-Hubert
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Sophia Achaibou
- Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Margaux Gaschet
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, 75015, France
| | - Sean P Kennedy
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France
| | - Marie-Cecile Ploy
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Sandra Da Re
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Christophe Dagot
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| |
Collapse
|
2
|
Ayipo YO, Chong CF, Mordi MN. Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities. RSC Med Chem 2023; 14:1012-1048. [PMID: 37360393 PMCID: PMC10285742 DOI: 10.1039/d3md00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/31/2023] [Indexed: 09/20/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria
| | - Chien Fung Chong
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman 31900 Kampar Perak Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
| |
Collapse
|
3
|
Zhao Y, Zhang L, Tang X, Ren S, Zhang Y. Anthropogenic disturbance promotes the diversification of antibiotic resistance genes and virulence factors in the gut of plateau pikas (Ochotona curzoniae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1027941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence and transmission of antibiotic resistance genes (ARGs) and virulence factors (VFs) pose a great threat to public health. The importance of pollution in determining the occurrence of ARGs and VFs in wildlife is poorly understood. Using a metagenomic approach, this study investigates the composition and functional pathways of bacteria, ARGs, and VFs in the gut microbiome of Plateau pikas in regions of medical pollution (MPR), heavy tourist traffic (HTR), and no contamination (NCR). We found that the abundance of probiotic genera (Clostridium, Eubacterium, Faecalibacterium, and Roseburia) were significantly lower in the HTR. The metabolic pathways of replication and repair in the endocrine and nervous systems were significantly enriched in the MPR, whereas endocrine and metabolic diseases were significantly enriched in the NCR. The Shannon and Gini–Simpson α-diversity indices of ARGs were highest in the HTR, and there were significant differences in β-diversity among the three regions. The resistance of ARGs to glycopeptide antibiotics increased significantly in the MPR, whereas the ARGs for aminocoumarins increased significantly in the HTR. The diversity of mobile genetic elements (MGEs) was significantly higher in the MPR than in other regions. We observed a strong positive correlation between ARGs and pathogenic bacteria, and the network structure was the most complex in the MPR. There were significant differences in the β-diversity of VFs among the three regions. Medical pollution led to significant enrichment of fibronectin-binding protein and PhoP, whereas tourism-related pollution (in the HTR) led to significant enrichment of LPS and LplA1. Our study indicates that environmental pollution can affect the structure and function of gut microbes and disseminate ARGs and VFs via horizontal transmission, thereby posing a threat to the health of wild animals.
Collapse
|
4
|
Pino-Otín MR, Gan C, Terrado E, Sanz MA, Ballestero D, Langa E. Antibiotic properties of Satureja montana L. hydrolate in bacteria and fungus of clinical interest and its impact in non-target environmental microorganisms. Sci Rep 2022; 12:18460. [PMID: 36323748 PMCID: PMC9630514 DOI: 10.1038/s41598-022-22419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyse the microbicidal and microbiostatic activity of S. montana hydrolate L., the water-soluble fraction of the hydro-distillation process used to obtain the essential oil, on 14 Gram-positive and Gram-negative bacteria and a fungus of clinical interest. To consider whether this hydrolate is a more environmentally friendly alternative to traditional antibiotics, its effect on non-target microorganisms in the aquatic and terrestrial environment was analysed using natural soil and river microorganism communities, characterized through 16S rRNA gene sequencing. Results showed that S. montana hydrolate was especially effective (25% v/v concentration) against Pasteurella aerogenes, Streptococcus agalactiae and Acinetobacter baumannii (priority 1, WHO). It was also a microbicide for a further 7 bacterial strains and the fungus Candida albicans (50% v/v concentration). The river and soil communities exposed to the hydrolate showed a decrease in their growth, as well as a decrease in their ability to metabolize polymers and carbohydrates (soil microorganisms) and polymers, carboxylic and ketone acids (river microorganisms). Hydrolates could be an alternative to conventional antibiotics, but their impact on the environment must be taken into account.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Cristina Gan
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Eva Terrado
- Universidad de Zaragoza, C. de Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - María Angeles Sanz
- CITA, Área de Laboratorios de Análisis y Asistencia Tecnológica, Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Elisa Langa
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| |
Collapse
|
5
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
6
|
Comparative Study of Antibacterial, Antibiofilm, Antiswarming and Antiquorum Sensing Activities of Origanum vulgare Essential Oil and Terpinene-4-ol against Pathogenic Bacteria. Life (Basel) 2022; 12:life12101616. [PMID: 36295051 PMCID: PMC9605346 DOI: 10.3390/life12101616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils from aromatic and medicinal plants have many bioactive compounds known for their important biological activities mainly their antibacterial effects. Here we evaluated qualitatively and quantitatively the biofilm formation capability of pathogenic bacterial strains (n = 8). Then, we investigated the antibacterial, antibiofilm, antiquorum-sensing, and antiswarming efficacy of Origanum vulgare essential oil (EO) and terpinene-4-ol. Our results revealed that EO exhibited a more potent inhibitory effect against the tested strains. While the terpinene-4-ol was found to be more effective against developed Staphylococcus aureus biofilm. Regarding the anti quorum-sensing activity, we noticed that O. vulgare displayed better inhibition percentages in violacein production even at a low concentration (MIC/4). Additionally, this EO showed better inhibition of Pseudomonas aeruginosa PAO1 migration in comparison with the terpinene-4-ol. Our findings revealed that using pure O. vulgare EO demonstrated better competitive effects against pathogenic bacteria with a different mode of action when compared to the terpinene-4-ol. Hence, exploration and development of efficient anti-infection agents from natural resources such as full EOs represent promising tools in anti-infective therapy.
Collapse
|
7
|
Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Curr Opin Microbiol 2021; 64:117-124. [PMID: 34700125 DOI: 10.1016/j.mib.2021.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/02/2023]
Abstract
There is evidence that human activity causes pollution that contributes to an enhanced selection of bacterial pathogens in the environment. In this review, we consider how environmental pollution can favour the selection of bacterial pathogens in the environment. We specifically discuss pollutants released into the environment by human activities (mainly human waste) that are associated with the selection for genetic features in environmental bacterial populations that lead to the emergence of bacterial pathogens. Finally, we also identify key pollutants that are associated with antibiotic resistance and discuss possibilities of how to prevent their release into the environment.
Collapse
|
8
|
Sanz-García F, Hernando-Amado S, Martínez JL. Evolution under low antibiotic concentrations: a risk for the selection of Pseudomonas aeruginosa multidrug-resistant mutants in nature. Environ Microbiol 2021; 24:1279-1293. [PMID: 34666420 DOI: 10.1111/1462-2920.15806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Antibiotic pollution of non-clinical environments might have a relevant impact on human health if resistant pathogens are selected. However, this potential risk is often overlooked, since drug concentrations in nature are usually below their minimal inhibitory concentrations (MICs). Albeit, antibiotic resistant bacteria can be selected even at sub-MIC concentrations, in a range known as the sub-MIC selective window. Using short-term evolution experiments, we have determined the sub-MIC selective windows of the opportunistic pathogen Pseudomonas aeruginosa for seven antibiotics of clinical relevance, finding the ones of quinolones to be the widest, and the ones of polymyxin B and imipenem, the narrowest. Clinically relevant multidrug-resistant mutants arose within the sub-MIC selective windows of most antibiotics tested, being some of these phenotypes mediated by efflux pumps' activity. The fact that the concentration of antibiotics reported in aquatic ecosystems - colonizable by P. aeruginosa - are, in occasions, higher than the ones that select multidrug-resistant mutants in our assays, has implications for understanding the role of different ecosystems and conditions in the emergence of antibiotic resistance from a One-Health perspective. Further, it reinforces the importance of procuring accurate information on the sub-MIC selective windows for drugs of clinical value in pathogens with environmental niches.
Collapse
|
9
|
Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products. Molecules 2021; 26:molecules26134007. [PMID: 34209107 PMCID: PMC8272120 DOI: 10.3390/molecules26134007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.
Collapse
|