1
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Roth A, Rodgers ML. The dominance of coinfecting parasites' indirect effects on host traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528182. [PMID: 36798170 PMCID: PMC9934634 DOI: 10.1101/2023.02.12.528182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Indirect genetic effects (IGEs) exist when there is heritable variation in one species' ability to alter a second species' traits. For example, parasites can evolve disparate strategies to manipulate host immune response, whether by evading detection or suppressing immunity. A complication arises during coinfection, when two or more parasite genotypes may try to impose distinct IGEs on the same host trait: which parasite's IGE will be dominant? Here, we apply the notion of dominance to IGEs during coinfection. Using a mathematical model we show that the dominance of IGEs can alter the evolutionary dynamics of parasites. We consider a resident parasite population receiving rare immigrants with a different immune manipulation trait. These immigrants' relative fitness depends on resident prevalence (e.g., the probability immigrants are alone in a host, or coinfecting with a native), and the dominance of the immigrant's IGE on host immunity. Next, we show experimentally that the cestode Schistocephalus solidus exerts an IGE on a host immune trait: parasite antigens from different populations produced different intensities of fibrosis. We then evaluated IGE dominance, finding evidence for overdominance (coinjected antigens induced an even stronger host immune response) which would be detrimental to immigrants when resident prevalence is high. This combination of experimental and modeling results shows that parasites do exhibit IGEs on host traits, and that the dominance of these IGEs during coinfection can substantially alter parasite evolution.
Collapse
Affiliation(s)
- Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Sophia Arruda
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Christian Polania
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Lauren Simonse
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Arshad Padhiar
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Andrea Roth
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Maria L. Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
- Present address: Department of Biological Sciences, North Carolina State University, Morehead City NC 28557, USA
| |
Collapse
|
3
|
Mazanec H, Buskova N, Gardian Z, Kuchta R. Secretion of extracellular vesicles during ontogeny of the tapeworm Schistocephalus solidus. Folia Parasitol (Praha) 2023; 70. [PMID: 36722286 DOI: 10.14411/fp.2023.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 01/18/2023]
Abstract
We provide the first ultrastructural evidence of the secretion of extracellular vesicles (EVs) across all parasitic stages of the tapeworm Schistocephalus solidus (Müller, 1776) (Cestoda: Diphyllobothriidea) using a laboratory life cycle model. We confirmed the presence of EV-like bodies in all stages examined, including the hexacanth, procercoids in the copepod, Macrocyclops albidus (Jurine, 1820), plerocercoids from the body cavity of the three-spined stickleback, Gasterosteus aculeatus Linnaeus, and adults cultivated in artificial medium. In addition, we provide description of novel tegumental structures potentially involved in EV biogenesis and the presence of unique elongated EVs similar to those previously described only in Fasciola hepatica Linnaeus, 1758 (Trematoda), Hymenolepis diminuta (Rudolphi, 1819) (Cestoda), and Trypanosoma brucei Plimmer et Bradford, 1899 (Kinetoplastida).
Collapse
Affiliation(s)
- Hynek Mazanec
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Nikol Buskova
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
White R, Sotillo J, Ancarola ME, Borup A, Boysen AT, Brindley PJ, Buzás EI, Cavallero S, Chaiyadet S, Chalmers IW, Cucher MA, Dagenais M, Davis CN, Devaney E, Duque‐Correa MA, Eichenberger RM, Fontenla S, Gasan TA, Hokke CH, Kosanovic M, Kuipers ME, Laha T, Loukas A, Maizels RM, Marcilla A, Mazanec H, Morphew RM, Neophytou K, Nguyen LT, Nolte‐‘t Hoen E, Povelones M, Robinson MW, Rojas A, Schabussova I, Smits HH, Sungpradit S, Tritten L, Whitehead B, Zakeri A, Nejsum P, Buck AH, Hoffmann KF. Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility. J Extracell Vesicles 2023; 12:e12298. [PMID: 36604533 PMCID: PMC9816087 DOI: 10.1002/jev2.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.
Collapse
|
5
|
Hautala K, Pursiainen J, Näreaho A, Nyman T, Varmanen P, Sukura A, Nielsen MK, Savijoki K. Label-free quantitative proteomics and immunoblotting identifies immunoreactive and other excretory-secretory (E/S) proteins of Anoplocephala perfoliata. Front Immunol 2022; 13:1045468. [PMID: 36466892 PMCID: PMC9709427 DOI: 10.3389/fimmu.2022.1045468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 06/11/2024] Open
Abstract
Anoplocephala perfoliata is a common tapeworm in horses causing colic and even mortalities. Current diagnostic tests to detect A. perfoliata infections have their limitations and an improved method is needed. Immunoreactive excretory/secretory proteins (E/S proteome) of this parasite can provide promising candidates for diagnostic tests. We compared E/S proteins produced by small (length < 20 mm, width < 5 mm) and large (length 20 to 40 mm, width 5 to 10 mm) A. perfoliata worms in vitro by label-free quantitative proteomics using a database composed of related Hymenolepis diminuta, Echinococcus multilocularis/granulosus and Taenia aseatica proteins for protein identifications. Altogether, 509 E/S proteins were identified after incubating the worms in vitro for three and eight hours. The greatest E/S proteome changes suggested both worm size- and time-dependent changes in cytoskeleton remodeling, apoptosis, and production of antigens/immunogens. The E/S proteins collected at the three-hour time point represented the natural conditions better than those collected at the eight-hour time point, and thereby contained the most relevant diagnostic targets. Immunoblotting using antibodies from horses tested positive/negative for A. perfoliata indicated strongest antigenicity/immunogenicity with 13-, 30- and 100-kDa proteins, involving a thioredoxin, heat-shock chaperone 90 (Hsp90), dynein light chain component (DYNLL), tubulin-specific chaperone A (TBCA) and signaling pathway modulators (14-3-3 and Sj-Ts4). This is among the first studies identifying new diagnostic targets and A. perfoliata antigens eliciting a IgG-response in horses.
Collapse
Affiliation(s)
- Katja Hautala
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jami Pursiainen
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Näreaho
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Nyman
- Institute of Clinical Medicine, Department of Immunology, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Pekka Varmanen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Antti Sukura
- Veterinary Pathology and Parasitology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Martin K. Nielsen
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Rooney J, Northcote HM, Williams TL, Cortés A, Cantacessi C, Morphew RM. Parasitic helminths and the host microbiome - a missing 'extracellular vesicle-sized' link? Trends Parasitol 2022; 38:737-747. [PMID: 35820945 DOI: 10.1016/j.pt.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Infections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk. Here, we explore knowledge of helminth EVs with an emphasis on their putative antimicrobial properties, and we argue that (i) an enhanced understanding of the mechanisms governing such interactions might assist the discovery and development of novel strategies of parasite control, and that (ii) the identification and characterisation of helminth molecules with antimicrobial properties might pave the way towards the discovery of novel antibiotics, thus aiding the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Holly M Northcote
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot 46100, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK.
| |
Collapse
|
7
|
Robinson MW, Cwiklinski K. Proteomics of Host-Helminth Interactions. Pathogens 2021; 10:pathogens10101317. [PMID: 34684264 PMCID: PMC8537615 DOI: 10.3390/pathogens10101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Helminth infections in people contribute to the 1 [...].
Collapse
Affiliation(s)
- Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
- Correspondence: (M.W.R.); (K.C.)
| | - Krystyna Cwiklinski
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, H91 DK59 Galway, Ireland
- Correspondence: (M.W.R.); (K.C.)
| |
Collapse
|