1
|
Huang Y, Peng Q, Tian X, Chen C, Zhu X, Huang C, Huo Z, Liu Y, Yang C, Liu C, Zhang P. Nuclear membrane protein SUN2 promotes replication of flaviviruses through modulating cytoskeleton reorganization mediated by NS1. Nat Commun 2024; 15:296. [PMID: 38177122 PMCID: PMC10766649 DOI: 10.1038/s41467-023-44580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Cytoskeleton is extensively recruited by flaviviruses for their infection. In this study, we uncovered an essential role of a nuclear membrane protein, SAD1/UNC84 domain protein 2 (SUN2) linking cytoskeleton and nucleoskeleton in the flavivirus replication. CRISPR/Cas9-mediated knockout of SUN2, but not SUN1, significantly reduces the replication of Zika virus (ZIKV), dengue virus (DENV), and Japanese encephalitis virus (JEV). In contrast, SUN2 does not affect the infection of non-flaviviridae RNA viruses. All three regions of SUN2 are required for its proviral effect. Mechanistically, SUN2 facilitates rearrangement of cytoskeleton and formation of replication organelles induced by viral infection, and hence promotes viral RNA synthesis. SUN2 is required for the interaction between cytoskeleton actin and ZIKV nonstructural protein 1 (NS1). Expression of dominant negative Nesprin-1 and Nesprin-2, which connect SUN2 to cytoskeleton proteins, alleviates the interaction between actin and NS1 and reduces viral replication levels. In a neonatal mouse infection model, SUN2 knockout dramatically alleviates the in vivo ZIKV replication and development of neuropathology. This work elucidates that recruitment of cytoskeleton proteins by flavivirus is coordinated by nuclear membrane proteins SUN2 and Nesprins, providing evidence for a link between nuclear membrane proteins and flavivirus infection.
Collapse
Affiliation(s)
- Yanxia Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Qinyu Peng
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Tian
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuanfeng Zhu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiting Huo
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Neurosurgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, China.
| | - Chao Liu
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Ping Zhang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ma H, Adams LJ, Raju S, Sariol A, Kafai NM, Janova H, Klimstra WB, Fremont DH, Diamond MS. The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses. Nat Commun 2024; 15:246. [PMID: 38172096 PMCID: PMC10764363 DOI: 10.1038/s41467-023-44624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.
Collapse
Affiliation(s)
- Hongming Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William B Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Rai P, Webb EM, Kang L, Weger-Lucarelli J. Insulin reduces the transmission potential of chikungunya virus and activates the toll pathway in Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2023; 32:648-657. [PMID: 37334906 DOI: 10.1111/imb.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus that has re-emerged globally over the last two decades and has the potential to become endemic in the United States due to the presence of competent mosquito vectors, Aedes aegypti and Aedes albopictus. CHIK disease is characterised by fever, rash, and joint pain, and causes chronic debilitating joint pain and swelling in >50% of infected individuals. Given the disease severity caused by CHIKV and the global presence of vectors to facilitate its spread, strategies to reduce viral transmission are desperately needed; however, the human biological factors driving CHIKV transmission are poorly understood. Towards that end, we have previously shown that mosquitoes fed on alphavirus-infected obese mice have reduced infection and transmission rates compared to those fed on infected lean mice despite similar viremia in lean and obese mice. One of the many host factors that increase in obese hosts is insulin, which was previously shown to impact the infection of mosquitoes by several flaviviruses. However, insulin's impact on alphavirus infection of live mosquitoes is unknown and whether insulin influences mosquito-borne virus transmission has not been tested. To test this, we exposed A. aegypti mosquitoes to bloodmeals with CHIKV in the presence or absence of physiologically relevant levels of insulin and found that insulin significantly lowered both infection and transmission rates. RNA sequencing analysis on mosquito midguts isolated at 1-day-post-infectious-bloodmeal (dpbm) showed enrichment in genes in the Toll immune pathway in the presence of insulin, which was validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We then sought to determine if the Toll pathway plays a role in CHIKV infection of Ae. aegypti mosquitoes; therefore, we knocked down Myd88, a critical immune adaptor molecule for the Toll pathway, in live mosquitoes, and found increased CHIKV infection compared to the mock knockdown control group. Overall, these data demonstrate that insulin reduces CHIKV transmission by Ae. aegypti and activates the Toll pathway in mosquitoes, suggesting that conditions resulting in higher serum insulin concentrations may reduce alphavirus transmission. Finally, these studies suggest that strategies to activate insulin or Toll signalling in mosquitoes may be an effective control strategy against medically relevant alphaviruses.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| | - Emily M Webb
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
- Department of Entomology, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
5
|
Elmasri Z, Negi V, Kuhn RJ, Jose J. Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding. PLoS Pathog 2022; 18:e1010892. [PMID: 36191050 PMCID: PMC9560593 DOI: 10.1371/journal.ppat.1010892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Many viruses encode ion channel proteins that oligomerize to form hydrophilic pores in membranes of virus-infected cells and the viral membrane in some enveloped viruses. Alphavirus 6K, human immunodeficiency virus type 1 Vpu (HIV-Vpu), influenza A virus M2 (IAV-M2), and hepatitis C virus P7 (HCV-P7) are transmembrane ion channel proteins that play essential roles in virus assembly, budding, and entry. While the oligomeric structures and mechanisms of ion channel activity are well-established for M2 and P7, these remain unknown for 6K. Here we investigated the functional role of the ion channel activity of 6K in alphavirus assembly by utilizing a series of Sindbis virus (SINV) ion channel chimeras expressing the ion channel helix from Vpu or M2 or substituting the entire 6K protein with full-length P7, in cis. We demonstrate that the Vpu helix efficiently complements 6K, whereas M2 and P7 are less efficient. Our results indicate that while SINV is primarily insensitive to the M2 ion channel inhibitor amantadine, the Vpu inhibitor 5-N, N-Hexamethylene amiloride (HMA), significantly reduces SINV release, suggesting that the ion channel activity of 6K similar to Vpu, promotes virus budding. Using live-cell imaging of SINV with a miniSOG-tagged 6K and mCherry-tagged E2, we further demonstrate that 6K and E2 colocalize with the Golgi apparatus in the secretory pathway. To contextualize the localization of 6K in the Golgi, we analyzed cells infected with SINV and SINV-ion channel chimeras using transmission electron microscopy. Our results provide evidence for the first time for the functional role of 6K in type II cytopathic vacuoles (CPV-II) formation. We demonstrate that in the absence of 6K, CPV-II, which originates from the Golgi apparatus, is not detected in infected cells, with a concomitant reduction in the glycoprotein transport to the plasma membrane. Substituting a functional ion channel, M2 or Vpu localizing to Golgi, restores CPV-II production, whereas P7, retained in the ER, is inadequate to induce CPV-II formation. Altogether our results indicate that ion channel activity of 6K is required for the formation of CPV-II from the Golgi apparatus, promoting glycoprotein spike transport to the plasma membrane and efficient virus budding.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vashi Negi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Markey Center for Structural Biology and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|