1
|
Edana GG, Preena P, Balan C, Sarangom SB, Vijayakumar K. Hematological characteristics of autochthonous hypermicrofilaremic dirofilariosis in dogs in Kannur District of Kerala. J Parasit Dis 2023; 47:787-792. [PMID: 38009152 PMCID: PMC10667202 DOI: 10.1007/s12639-023-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/28/2023] [Indexed: 11/28/2023] Open
Abstract
This study aimed to determine whether autochthonous high-intensity D. repens microfilaremia leads to haematological changes in companion dogs. Dogs with hypermicrofilaremia presented to the District Veterinary Centre, Kannur were selected for the study. A total of 100 dogs were positive for hypermicrofilariaemia with D. repens based on peripheral blood smear examination and Knott's test. Of these, 3 dogs were concurrently positive for sheathed microfilaria (MF) of Brugia spp. Interestingly, an adult live worm of D. repens approximately eight cm in length was detected on a subcutaneous mass on the hind limb of a hypermicrofilaremic dog in the study. We compared the hematological parameters of 100 autochthonous hypermicrofilaremic dogs and 15 uninfected dogs. The hematological findings in the study are mild to moderate anemia, moderate to severe thrombocytopenia, leucocytosis with granulocytosis, lymphocytosis and monocytosis as compared to the uninfected group of dogs. The pathogenicity of naturally occurring hypermicrofilaremia is poorly studied, and knowledge of its epidemiology, host-parasite relationship and impact on various organs is warranted for better prevention and control, especially in hot-spot areas. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-023-01622-6.
Collapse
Affiliation(s)
- Georgen G. Edana
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, 680 651 Kerala India
| | - P. Preena
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, 680 651 Kerala India
| | - C. Balan
- Department of Animal Husbandry Statistics and Computer Applications, Madras Veterinary College (TANUVAS), Chennai, 600 007 India
| | - Sherin B. Sarangom
- Department of Animal Husbandry, District Veterinary Centre, Kannur, Kerala 670 001 India
| | - K. Vijayakumar
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, 680 651 Kerala India
| |
Collapse
|
2
|
Morchón R, Montoya-Alonso JA, Rodríguez-Escolar I, Carretón E. What Has Happened to Heartworm Disease in Europe in the Last 10 Years? Pathogens 2022; 11:pathogens11091042. [PMID: 36145474 PMCID: PMC9503846 DOI: 10.3390/pathogens11091042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Heartworm disease caused by Dirofilaria immitis is a vector-borne disease that affects canids and felids, both domestic and wild, throughout the world. It is a chronic disease which causes vascular damage in pulmonary arteries, and in advanced stages, the presence of pulmonary hypertension and right-sided congestive heart failure can be evidenced. Moreover, pulmonary thromboembolism is caused by the death of the worms, which can be lethal for the infected animal. Furthermore, it is the causative agent of human pulmonary dirofilariosis, being a zoonotic disease. The aim of this review was to update the current epidemiological situation of heartworm in Europe in dogs, cats, wild animals, and vectors insects, and to analyse the factors that may have contributed to the continuous spread of the disease in the last decade (2012–2021). In Europe, the disease has extended to eastern countries, being currently endemic in countries where previously only isolated or imported cases were reported. Furthermore, its prevalence has continued to increase in southern countries, traditionally endemic. This distribution trends and changes are influenced by several factors which are discussed in this review, such as the climate changes, presence of vectors in new areas, the appearance of new competent vector species in the continent, increased movement of pets that travelled to or originated from endemic countries, the urbanisation of rural areas leading to the formation of so-called “heat islands”, or the creation of extensive areas of irrigated crops. The continuous expansion of D. immitis must be monitored, and measures adapted to the situation of each country must be carried out for adequate control.
Collapse
Affiliation(s)
- Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007 Salamanca, Spain
- Correspondence: (R.M.); (E.C.)
| | - José Alberto Montoya-Alonso
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413 Las Palmas, Spain
| | - Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, University of Salamanca, Campus Miguel Unamuno, 37007 Salamanca, Spain
| | - Elena Carretón
- Internal Medicine, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Campus Arucas, Arucas, 35413 Las Palmas, Spain
- Correspondence: (R.M.); (E.C.)
| |
Collapse
|
3
|
Fuehrer HP, Morelli S, Unterköfler MS, Bajer A, Bakran-Lebl K, Dwużnik-Szarek D, Farkas R, Grandi G, Heddergott M, Jokelainen P, Knific T, Leschnik M, Miterpáková M, Modrý D, Petersen HH, Skírnisson K, Vergles Rataj A, Schnyder M, Strube C. Dirofilaria spp. and Angiostrongylus vasorum: Current Risk of Spreading in Central and Northern Europe. Pathogens 2021; 10:1268. [PMID: 34684217 PMCID: PMC8537668 DOI: 10.3390/pathogens10101268] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe.
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Maria Sophia Unterköfler
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.B.); (D.D.-S.)
| | - Karin Bakran-Lebl
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (M.S.U.); (K.B.-L.)
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.B.); (D.D.-S.)
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Giulio Grandi
- Section for Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
- Department of Microbiology, National Veterinary Institute (SVA), 756 51 Uppsala, Sweden
| | - Mike Heddergott
- Department of Zoology, Musée National d’Historire Naturelle, 25, Rue Münster, 2160 Luxembourg, Luxembourg;
| | - Pikka Jokelainen
- Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Tanja Knific
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Michael Leschnik
- Clinical Unit of Internal Medicine Small Animals, Department/Universitätsklinik für Kleintiere und Pferde, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Martina Miterpáková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
| | - David Modrý
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic;
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague, 16500 Praha-Suchdol, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Heidi Huus Petersen
- Centre for Diagnostic, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Karl Skírnisson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
| | - Aleksandra Vergles Rataj
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Manuela Schnyder
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland;
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| |
Collapse
|