Li YA, Sun Y, Zhang Y, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a virus-like particles induces a protective immune response against porcine circovirus type 2 in mice.
Vaccine 2022;
40:4732-4741. [PMID:
35773121 DOI:
10.1016/j.vaccine.2022.06.046]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
The virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) is an attractive vaccine candidate that retains the natural conformation of the virion but lacks the viral genome to replicate, thus balancing safety and immunogenicity. However, the assembly of VLPs requires cumbersome subsequent processes, hindering the development of related vaccines. In addition, as a subunit antigen, VLPs are defective in inducing cellular and mucosal immune responses. In this study, the capsid (Cap) protein of PCV2 was synthesized and self-assembled into VLPs in the recombinant attenuated S. Choleraesuis vector, rSC0016(pS-Cap). Furthermore, rSC0016(pS-Cap) induced a Cap-specific Th1-dominant immune response, mucosal immune responses, and neutralizing antibodies against PCV2. Finally, the virus genome copies in mice immunized with the rSC0016(pS-Cap) were significantly lower than those of the empty vector control group after challenge with PCV2. In conclusion, our study demonstrates the potential of using S. Choleraesuis vectors to delivery VLPs, providing new ideas for the development of PCV2 vaccines.
Collapse