2
|
Dogadov DI, Kyuregyan KK, Goncharenko AM, Mikhailov MI. Measles in non-human primates. J Med Primatol 2023; 52:135-143. [PMID: 36440505 DOI: 10.1111/jmp.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
It is six decades since the measles vaccine was first introduced, and yet we continue to see frequent outbreaks of this disease occurring all over the world. Many non-human primate (NHP) species, including apes, are susceptible to the measles virus. Spontaneous measles outbreaks have been described in a number of zoos and primate centers worldwide. Research into the spontaneous and experimental infection of laboratory primates with measles represents an invaluable source of information regarding the biology and pathogenesis of this virus and continues to be an irreplaceable and unique tool for testing vaccines and treatments. The purpose of this literature review is to summarize and analyze published data on the circulation of the measles virus among free-living synanthropic and captive primate populations, as well as the results of experiments that have modeled this infection in NHPs.
Collapse
Affiliation(s)
- Dmitriy I Dogadov
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Karen K Kyuregyan
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| | - Alexandra M Goncharenko
- Research Institute of Medical Primatology of the Ministry of Education and Science of Russia, Sochi, Russia
| | - Mikhail I Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
4
|
Cui Y, Hou L, Pan Y, Feng X, Zhou J, Wang D, Guo J, Liu C, Shi Y, Sun T, Yang X, Zhu N, Tong X, Wang Y, Liu J. Reconstruction of the Evolutionary Origin, Phylodynamics, and Phylogeography of the Porcine Circovirus Type 3. Front Microbiol 2022; 13:898212. [PMID: 35663871 PMCID: PMC9158500 DOI: 10.3389/fmicb.2022.898212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is a newly identified virus associated with porcine dermatitis and nephropathy syndrome (PDNS) and multisystemic inflammatory responses in pigs. Recent studies suggests that PCV3 originated from bat circoviruses; however, the origin time, mode of spread, and geographic distribution of PCV3 remain unclear. In this study, the evolutionary origin, phylodynamics, and phylogeography of PCV3 were reconstructed based on the available complete genome sequences. PCV3 showed a closer relationship with bird circovirus than with bat circovirus, but their common ancestor was bat circovirus, indicating that birds may be intermediate hosts for the spread of circoviruses in pigs. Using the BEAST and phylogenetic analyses, three different clades of PCV3 (PCV3a, PCV3b, and PCV3c) were identified, with PCV3a being the most prevalent PCV3 clade. Further studies indicated that the earliest origin of PCV3 can be traced back to 1907.53–1923.44, with a substitution rate of 3.104 × 10–4 to 6.8524 × 10–4 substitution/site/year. A phylogeographic analysis highlighted Malaysia as the earliest location of the original PCV3, which migrated to Asia, America, and Europe. Overall, this study provides novel insights into the evolutionary origin, spread mode, and geographic distribution of PCV3, which will facilitate the prevention and control of PCV3 epidemics in the future.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yongxia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|