1
|
Stewart ATM, Mysore K, Njoroge TM, Winter N, Feng RS, Singh S, James LD, Singkhaimuk P, Sun L, Mohammed A, Oxley JD, Duckham C, Ponlawat A, Severson DW, Duman-Scheel M. Demonstration of RNAi Yeast Insecticide Activity in Semi-Field Larvicide and Attractive Targeted Sugar Bait Trials Conducted on Aedes and Culex Mosquitoes. INSECTS 2023; 14:950. [PMID: 38132622 PMCID: PMC10743515 DOI: 10.3390/insects14120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.
Collapse
Affiliation(s)
- Akilah T. M. Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Teresia M. Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Satish Singh
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Lester D. James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Preeraya Singkhaimuk
- Department of Entomology, US Army Medical Directorate–Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok 10400, Thailand; (P.S.); (A.P.)
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - James D. Oxley
- Southwest Research Institute, San Antonio, TX 78238, USA;
| | | | - Alongkot Ponlawat
- Department of Entomology, US Army Medical Directorate–Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok 10400, Thailand; (P.S.); (A.P.)
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
- Department of Biological Sciences, College of Science, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, College of Science, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Mysore K, Njoroge TM, Stewart ATM, Winter N, Hamid-Adiamoh M, Sun L, Feng RS, James LD, Mohammed A, Severson DW, Duman-Scheel M. Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes. Sci Rep 2023; 13:22511. [PMID: 38110471 PMCID: PMC10728091 DOI: 10.1038/s41598-023-49799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Akilah T M Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Lester D James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - David W Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Brizzee C, Mysore K, Njoroge TM, McConnell S, Hamid-Adiamoh M, Stewart ATM, Kinder JT, Crawford J, Duman-Scheel M. Targeting Mosquitoes through Generation of an Insecticidal RNAi Yeast Strain Using Cas-CLOVER and Super PiggyBac Engineering in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:1056. [PMID: 37998862 PMCID: PMC10672312 DOI: 10.3390/jof9111056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.
Collapse
Affiliation(s)
- Corey Brizzee
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Teresia M. Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Seth McConnell
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Akilah T. M. Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - J. Tyler Kinder
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Jack Crawford
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
6
|
Njoroge TM, Hamid-Adiamoh M, Duman-Scheel M. Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management. INSECTS 2023; 14:585. [PMID: 37504591 PMCID: PMC10380652 DOI: 10.3390/insects14070585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Due to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.
Collapse
Affiliation(s)
- Teresia Muthoni Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| |
Collapse
|
7
|
Yadav M, Dahiya N, Sehrawat N. Mosquito gene targeted RNAi studies for vector control. Funct Integr Genomics 2023; 23:180. [PMID: 37227504 PMCID: PMC10211311 DOI: 10.1007/s10142-023-01072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
8
|
Mysore K, Sun L, Hapairai LK, Wang CW, Roethele JB, Igiede J, Scheel MP, Scheel ND, Li P, Wei N, Severson DW, Duman-Scheel M. Correction: Mysore et al. A Broad-Based Mosquito Yeast Interfering RNA Pesticide Targeting Rbfox1 Represses Notch Signaling and Kills Both Larvae and Adult Mosquitoes. Pathogens 2021, 10, 1251. Pathogens 2022; 11:pathogens11090956. [PMID: 36145499 PMCID: PMC9501479 DOI: 10.3390/pathogens11090956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Error in Figure [...]
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Limb K. Hapairai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Chien-Wei Wang
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Civil and Environmental Engineering and Earth Sciences, The University of Notre Dame, South Bend, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Jessica Igiede
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Biological Sciences, The University of Notre Dame, South Bend, IN 46556, USA
| | - Max P. Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Nicholas D. Scheel
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Biological Sciences, The University of Notre Dame, South Bend, IN 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
| | - Na Wei
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Civil and Environmental Engineering and Earth Sciences, The University of Notre Dame, South Bend, IN 46556, USA
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Biological Sciences, The University of Notre Dame, South Bend, IN 46556, USA
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, South Bend, IN 46556, USA
- Correspondence:
| |
Collapse
|
9
|
Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Jie X, Gu J, Chen XG. Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus. Toxins (Basel) 2022; 14:147. [PMID: 35202174 PMCID: PMC8879223 DOI: 10.3390/toxins14020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.
Collapse
Affiliation(s)
- Khadija Batool
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Intikhab Alam
- College of Life Sciences, South China Agricultural University, Guangzhou 510515, China;
| | - Peiwen Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Zeng Shu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Wenqiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao Jie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| |
Collapse
|
10
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|