1
|
Anil S, Joseph B, Pereira MA, Arya S, Syamala S, Sweety VK, Jayasinghe R. Diabetic Retinopathy and Periodontitis: Implications from a Systematic Review and Meta-Analysis. Int Dent J 2025; 75:453-463. [PMID: 39592324 PMCID: PMC11976626 DOI: 10.1016/j.identj.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Diabetes mellitus, a chronic metabolic disorder affecting millions worldwide, is associated with microvascular complications, including diabetic retinopathy (DR) and periodontitis. Understanding their interrelationship is crucial for comprehensive patient care. OBJECTIVE This systematic review and meta-analysis aim to investigate the association between DR and periodontitis in patients with Type 1 and Type 2 diabetes. METHODOLOGY Using the PECO framework, we searched PubMed/MEDLINE, Scopus, EMBASE, Google Scholar, and Web of Science databases (Inception to April 2023) for studies on the association between DR and periodontitis. Ten studies (n = 1828 participants), including observational and cross-sectional studies, met the inclusion criteria. We conducted qualitative synthesis, risk of bias analysis using the ROBINS-E tool, Grading of Recommendations, Assessment, Development, and Evaluations assessment (GRADE), and random-effects meta-analysis. RESULTS Eight studies found a significant association between severe periodontitis (pocket depth ≥5 mm) and DR, while two found no association. Meta-analysis of 843 participants showed diabetics with periodontitis had 4.48 times higher odds (95% confidence interval: 1.67-12.07, P = .003) of developing retinopathy compared to diabetics without periodontitis. High heterogeneity was observed (I2 = 86%). Subgroup analysis by diabetes type showed no significant difference. The overall GRADE level of evidence was very low. CONCLUSION While most included studies suggest an association between severe periodontitis and increased DR risk, the overall certainty of evidence is low. These findings highlight the potential importance of periodontal health in diabetic patients. High-quality longitudinal studies with adequate control of confounders are required to determine if periodontitis contributes to the progression of DR or if the conditions are merely coincidentally related.
Collapse
Affiliation(s)
- Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha, Qatar; College of Dental Medicine, Qatar University, Doha, Qatar.
| | - Betsy Joseph
- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Thiruvalla, Kerala, India
| | - Merlyn Anjali Pereira
- Department of Ophthalmology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Saket Arya
- Department of Ophthalmology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Vishnupriya K Sweety
- Pushpagiri Institute of Medical Sciences and Research Centre, Medicity, Thiruvalla, Kerala, India
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
2
|
Qian C, Chen S, Chen L, Zhang C, Yang L, Li Q, Kang B, Chen X, Mei P, Gu H, Liu Y, Liu Y. Tetrahedral DNA Nanostructure-Modified Nanocoating for Improved Bioaffinity and Osseointegration of Titanium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412747. [PMID: 40103513 DOI: 10.1002/smll.202412747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Titanium (Ti) is extensively used in the medical field because of its excellent biomechanical properties; however, how to precisely fabricate Ti surfaces at a nanoscale remains challenging. In this study, a DNA nanocoating system to functionalize Ti surfaces via a series of sequential reactions involving hydroxylation, silanization, and click chemistry is developed. Tetrahedral DNA nanostructures (TDNs) of two different sizes (≈7 and 30 nm) are assembled and characterized for subsequent surface attachment. In vitro and in vivo assays demonstrated significantly enhanced cell adhesion, spreading, proliferation, osteogenesis, and osseointegration on Ti surfaces modified with 30-nm TDNs, compared to slightly improved effects with 7-nm TDNs. Mechanistic studies showed that the focal adhesion pathway contributed to the enhanced bioaffinity of the 30-nm TDNs, as evidenced by the upregulated expression of vinculin and activation of the Akt signaling pathway. Moreover, under inflammatory or hypoxic conditions, Ti surfaces modified with 30-nm TDNs maintained excellent cellular performance comparable to that under normal conditions, suggesting a broader adaptability for DNA nanoparticles. Thus, better performance is achieved following modification with 30-nm TDNs. In summary, the proposed DNA-guided nanocoating system provides a novel and efficient strategy for the surface nanofabrication of Ti.
Collapse
Affiliation(s)
- Chenghui Qian
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Si Chen
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Liman Chen
- Fudan University Shanghai Cancer Center, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200433, China
| | - Chenyang Zhang
- Department of Oral Implantology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Lingyi Yang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Binbin Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Peter Mei
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Hongzhou Gu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| |
Collapse
|
3
|
Smedås AK, Paris LG, Al‐Sharabi N, Kristoffersen EK, Sanz M, Mustafa K, Bunæs DF, Shanbhag S. Secretomes of Gingival Fibroblasts From Periodontally Diseased Tissues: A Proteomic Analysis. Clin Exp Dent Res 2025; 11:e70103. [PMID: 39988729 PMCID: PMC11847645 DOI: 10.1002/cre2.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/19/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE Cell secretomes represent a promising strategy for periodontal and bone regeneration. The objective of this study was to characterize the secretome of human gingival fibroblasts (GF) from periodontally diseased tissues (GF-perio) using proteomics. MATERIALS AND METHODS Conditioned media of GF-perio from periodontitis patients (n = 6, 48-h serum-free culture) were subjected to liquid chromatography with tandem mass spectrometry. Global profiles, differentially expressed proteins (DEPs), and functional/gene-set enrichment (FEA) were analyzed using bioinformatics. Selected bone regeneration-related proteins were additionally measured using a multiplex immunoassay. Conditioned media of GF from periodontally healthy subjects were used as a reference. RESULTS Overall, 1833 proteins were detected in GF-perio secretomes, including several growth factors, cytokines, chemokines, and extracellular matrix proteins important for wound healing and regeneration. Key bone-related cytokines (FGF2, MCP1, GPNMB, MMP2, IL6, IL8) were confirmed by an immunoassay. Compared to the reference group, 127 exclusive proteins and 73 DEPs (p < 0.05) were identified in the GF-perio group. FEA revealed significant enrichment of "exosome" and "cytoplasm" related cellular components in GF-perio secretomes. CONCLUSION The secretome of GF from periodontally diseased tissues may hold therapeutic potential, with several proteins important for wound healing and regeneration, especially those related to exosome functions.
Collapse
Affiliation(s)
- Anne Kari Smedås
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| | | | - Niyaz Al‐Sharabi
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | - Mariano Sanz
- ETEP Research GroupUniversity Complutense of MadridMadridSpain
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| | - Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
- Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
- Department of Periodontology, Faculty of DentistryUniversity of OsloOsloNorway
| |
Collapse
|
4
|
Gürsoy UK, Oikonomou I, Yilmaz M, Gürsoy M. Advances in periodontal healing biomarkers. Adv Clin Chem 2025; 125:143-167. [PMID: 39988405 DOI: 10.1016/bs.acc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Periodontitis is the infectious-inflammatory disease of tooth-supporting tissues. Periodontal treatment, either non-surgical or surgical, aims to remove infection, reduce inflammation, eliminate tissue loss, and gain clinical attachment. Clinical and radiographic recordings are widely used and accepted as gold-standard methods in periodontal diagnostics. While these traditional methods allow clinicians to monitor and diagnose periodontitis, they cannot be used to estimate the course of periodontal healing, or predict the disease recurrence or estimate the treatment outcome. Early prediction of the long-term consequences of periodontal treatment would be a crucial and valuable information not only for the clinicians, but also for the patients. Rapid advancements during past few decades boosted the periodontal biomarker studies and various microbe- or host-derived biochemical markers have been suggested as diagnostic biomarkers of periodontitis. Yet, there is no consensus regarding the accuracy of diagnostic biomarkers to monitor treatment response or to predict prognosis. The aim of this chapter will be to describe the healing patterns of periodontal tissues after treatment and present the available evidence on biomarkers that can indicate or predict successful treatment outcomes.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Periodontology Department, Institute of Dentistry, University of Turku, Turku, Finland.
| | - Ilias Oikonomou
- Periodontology Department, 251 Hellenic Airforce General Hospital, Athens, Greece
| | - Mustafa Yilmaz
- Periodontology Department, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Mervi Gürsoy
- Periodontology Department, Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| |
Collapse
|
5
|
Leonov G, Varaeva Y, Livantsova E, Vasilyev A, Vladimirskaya O, Korotkova T, Nikityuk D, Starodubova A. Periodontal pathogens and obesity in the context of cardiovascular risks across age groups. FRONTIERS IN ORAL HEALTH 2025; 5:1488833. [PMID: 39850469 PMCID: PMC11754283 DOI: 10.3389/froh.2024.1488833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity among noncommunicable diseases. Over the past decade, there has been a notable increase in the prevalence of CVDs among young individuals. Obesity, a well-known risk factor for CVDs, is also associated with various comorbidities that may contribute to cardiovascular risk. The relationship between periodontal pathogens and CVD risk factors, including obesity, smoking, lipid metabolism disorders, and inflammatory markers, remains underexplored. Methods This study examined the relationship between six periodontal pathogens (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Treponema denticola, Tannerella forsythia, Prevotella intermedia, and Fusobacterium nucleatum) and CVD risk factors among 189 subjects stratified by age and body mass index (BMI). Body composition was assessed via bioimpedance analysis, and blood samples were analyzed for lipid profiles, glucose, and proinflammatory cytokines. Oral samples were collected for polymerase chain reaction (PCR) analysis to identify periodontal pathogens. Cardiovascular and diabetes risk scores were calculated using the SCORE and FINDRISC scales. Results The prevalence of periodontal pathogens in the population was 33.0% for P. gingivalis, 47.8% for P. intermedia, 63.4% for A. actinomycetemcomitans, 46.6% for T. forsythia, 46.6% for T. denticola, and 89.2% for F. nucleatum. Significant age- and BMI-related differences were observed in pathogen prevalence, particularly with P. gingivalis, P. intermedia, and T. denticola. Young obese individuals exhibited a higher prevalence of P. intermedia and T. forsythia. P. gingivalis was found to be associated with hypertension and dyslipidemia, while P. intermedia was linked to hypertension and obesity. T. denticola was associated with obesity, dyslipidemia and smoking, whereas T. forsythia was linked to dyslipidemia alone. Conclusions This study highlights the potential connection between periodontal pathogens and risk factors associated with cardiovascular disease, including smoking, elevated BMI, increased adipose tissue, hypertension, and dyslipidemia. Further research is required to determine the causal relationships between oral microbiome dysbiosis, obesity and, systemic diseases and to develop an effective strategy for preventing oral health-related CVD risk factors in young adults.
Collapse
Affiliation(s)
- Georgy Leonov
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Yurgita Varaeva
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Elena Livantsova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Andrey Vasilyev
- Department of Microbiology, Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Vladimirskaya
- Department of Microbiology, Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | - Tatyana Korotkova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Dmitry Nikityuk
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Antonina Starodubova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Sriram G, Makkar H. Microfluidic organ-on-chip systems for periodontal research: advances and future directions. Front Bioeng Biotechnol 2025; 12:1490453. [PMID: 39840127 PMCID: PMC11747509 DOI: 10.3389/fbioe.2024.1490453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated in vitro models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease. Of interest is their application in understanding periodontal disease, a chronic inflammatory condition marked by the progressive destruction of periodontal tissues, including gingiva, periodontal ligament, and alveolar bone. The pathogenesis of periodontal disease involves a complex interplay between microbial dysbiosis and host immune responses, which can lead to a loss of dental support structures and contribute to systemic conditions such as cardiovascular disease, diabetes, and inflammatory bowel disease. This provides a comprehensive overview of the latest developments in millifluidic and microfluidic systems designed to emulate periodontal host-microbe and host-material interactions. We discuss the critical engineering and biological considerations in designing these platforms, their applications in studying oral biofilms, periodontal tissue responses, and their potential to unravel disease mechanisms and therapeutic targets in periodontal disease.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Khaing EM, Lertsuphotvanit N, Thammasut W, Rojviriya C, Chansatidkosol S, Phattarateera S, Pichayakorn W, Phaechamud T. Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole. Polymers (Basel) 2024; 16:3477. [PMID: 39771329 PMCID: PMC11728690 DOI: 10.3390/polym16243477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent. Consequently, assessments were conducted on the physicochemical properties, gel formation, drug permeation, drug release, morphological topography, and antimicrobial activities of the formulation. The formulation demonstrated an increased slope characteristic of Newtonian flow at higher bioplastic concentrations. The adequate polymer concentration facilitated swift phase inversion, resulting in robust, solid-like matrices. The mechanical characteristics of the transformed in situ gel typically exhibit an upward trend as the polymer concentration increased. The utilization of sodium fluorescein and Nile red as fluorescent probes effectively tracked the interfacial solvent-aqueous movement during the phase inversion of in situ gels, confirming that the cellulose acetate butyrate matrix delayed the solvent exchange process. The initial burst release of metronidazole and doxycycline hyclate was minimized, achieving a sustained release profile over 7 days in in situ gels containing 25% and 40% cellulose acetate butyrate, primarily governed by a diffusion-controlled release mechanism. Metronidazole showed higher permeation through the porcine buccal membrane, while doxycycline hyclate exhibited greater tissue accumulation, both influenced by polymer concentration. The more highly concentrated polymeric in situ gel formed a uniformly porous structure. Metronidazole and doxycycline hyclate-loaded in situ gels showed synergistic antibacterial effects against S. aureus and P. gingivalis. Over time, the more highly concentrated polymeric in situ gel showed superior retention of antibacterial efficacy due to its denser cellulose acetate butyrate matrix, which modulated drug release and enhanced synergistic effects, making it a promising injectable treatment for periodontitis, particularly against P. gingivalis.
Collapse
Affiliation(s)
- Ei Mon Khaing
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
| | | | - Warakon Thammasut
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand;
| | - Siraprapa Chansatidkosol
- Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Supanut Phattarateera
- Plastic Technology Research Team, Advanced Polymer Research Group, National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand;
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Thawatchai Phaechamud
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
8
|
La Sala L, Carlini V, Mandò C, Anelli GM, Pontiroli AE, Trabucchi E, Cetin I, Abati S. Maternal Salivary miR-423-5p Is Linked to Neonatal Outcomes and Periodontal Status in Cardiovascular-High-Risk Pregnancies. Int J Mol Sci 2024; 25:9087. [PMID: 39201773 PMCID: PMC11354562 DOI: 10.3390/ijms25169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Periodontal disease (PD) during pregnancy may trigger systemic inflammation, increasing the risk of developing cardiometabolic disease (CMD). As a consequence, PD may result in the activation of cellular and molecular pathways, affecting the disease course and pregnancy outcome. Although microRNAs (miRNAs) are considered ideal biomarkers for many diseases, few studies have investigated salivary miRNAs and their role in pregnancy or neonatal outcomes. In this study, we sought to investigate the associations between salivary miRNAs of pregnant women with oral diseases and their effects on neonatal outcomes. Eleven (n = 11) salivary miRNAs from a cohort of pregnant women with oral diseases (n = 32; oral health, H; gingivitis, G; and periodontitis, P) were detected using a previous profiling analysis with an FDR < 0.20 and a fold change (FC) < 0.5 or FC > 2 for the most highly expressed miRNAs. Spearman correlations were performed for 11 salivary microRNAs associated with oral-derived inflammation, which could affect neonatal outcomes during pregnancies at risk for cardiometabolic disease (CMD), defined by the presence of a high pregestational BMI. In addition, ROC curves demonstrated the diagnostic accuracy of the markers used. Upregulation of miR-423-5p expression and a decrease in miR-27b-3p expression were detected in the P-group (p < 0.05), and ROC analysis revealed the diagnostic accuracy of miR-423-5p for discriminating oral diseases, such as gingivitis versus periodontitis (P vs. G, AUC = 0.78, p < 0.05), and for discriminating it from the healthy oral cavity (P vs. H, AUC = 0.9, p < 0.01). In addition, miR-27b-3p and miR-622 were also able to discriminate the healthy group from the P-group (AUC = 0.8, p < 0.05; AUC = 0.8, p < 0.05). miR-483-5p was able to discriminate between the G-group (AUC = 0.9, p < 0.01) and the P-group (AUC = 0.8, p < 0.05). These data support the role of salivary miRNAs as early biomarkers for neonatal outcomes in pregnant women with periodontal disease at high risk for CMD and suggest that there is cross-talk between salivary miRNAs and subclinical systemic inflammation.
Collapse
Affiliation(s)
- Lucia La Sala
- Department Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS MultiMedica, 20138 Milan, Italy;
| | | | - Chiara Mandò
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | | | | | - Irene Cetin
- Department of Mother, Child and Neonate, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvio Abati
- Department of Dentistry, Vita-Salute San Raffaele University, Milan 20132, Italy;
| |
Collapse
|
9
|
Scrobota I, Tig IA, Marcu AO, Potra Cicalau GI, Sachelarie L, Iova G. Evaluation of Immunohistochemical Biomarkers in Diabetic Wistar Rats with Periodontal Disease. J Pers Med 2024; 14:527. [PMID: 38793109 PMCID: PMC11121950 DOI: 10.3390/jpm14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The association of periodontal disease and diabetes is a subject of intense research in terms of etiopathology and treatment options. This research aimed to evaluate the modulation of the local inflammatory status by two natural extracts, curcumin (Cu) and rutin (R), in an experimentally induced diabetes and periodontal disease in Wistar rats. METHODS Fifty Wistar albino rats were randomly assigned to five groups: Control (C), Diabetes-associated Periodontal Disease (DP), Diabetes-associated Periodontal Disease treated with Curcumin (DPCu), Diabetes-associated Periodontal Disease treated with Rutin (DPR), and Diabetes-associated Periodontal Disease treated with both Curcumin and Rutin (DPCuR). Gingival samples were collected from all rats, and immunohistochemical markers CD3, CD20, and CD34 were evaluated to assess the local inflammatory infiltrate. Descriptive statistics were applied (SPSS24 Software, Armonk, NY, USA). RESULTS Rutin, alone or combined with Curcumin, reduced CD3-positive cell levels. Curcumin demonstrated superior efficacy in reducing CD20-positive cells. The combination of Curcumin and Rutin had the most important impact on both markers. Curcumin notably increased immature CD34-positive cell levels. CONCLUSIONS Curcumin and Rutin, either alone or together, hold potential for reducing local inflammation in diabetes-induced periodontal disease in Wistar rats.
Collapse
Affiliation(s)
- Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Ioan Andrei Tig
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Andrea Olivia Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Georgiana Ioana Potra Cicalau
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Liliana Sachelarie
- Preclinics Department, Faculty of Medicine, Apollonia University, 700511 Iasi, Romania
| | - Gilda Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| |
Collapse
|
10
|
Van Holm W, Zayed N, Lauwens K, Saghi M, Axelsson J, Aktan MK, Braem A, Simoens K, Vanbrabant L, Proost P, Van Holm B, Maes P, Boon N, Bernaerts K, Teughels W. Oral Biofilm Composition, Dissemination to Keratinocytes, and Inflammatory Attenuation Depend on Probiotic and Synbiotic Strain Specificity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10253-z. [PMID: 38619794 DOI: 10.1007/s12602-024-10253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Several inflammatory diseases are characterized by a disruption in the equilibrium between the host and its microbiome. Due to the increase in resistance, the use of antibiotics for the widespread, nonspecific killing of microorganisms is at risk. Pro-microbial approaches focused on stimulating or introducing beneficial species antagonistic toward pathobionts may be a viable alternative for restoring the host-microbiome equilibrium. Unfortunately, not all potential probiotic or synbiotic species and even subspecies (to strain level) are equally effective for the designated pathology, leading to conflicting accounts of their efficacy. To assess the extent of these species- and strain-specific effects, 13 probiotic candidates were evaluated for their probiotic and synbiotic potential with glycerol on in vitro oral biofilms, dissemination from biofilms to keratinocytes, and anti-inflammatory activity. Species- and strain-specific effects and efficacies were observed in how they functioned as probiotics or synbiotics by influencing oral pathobionts and commensals within biofilms and affected the dissemination of pathobionts to keratinocytes, ranging from ineffective strains to strains that reduced pathobionts by 3 + log. In addition, a minority of the candidates exhibited the ability to mitigate the inflammatory response of LPS-stimulated monocytes. For a comprehensive assessment of probiotic therapy for oral health, a judicious selection of fully characterized probiotic strains that are specifically tailored to the designated pathology is required. This approach aims to challenge the prevailing perception of probiotics, shifting the focus away from "form over function." Rather than using unproven, hypothetical probiotic strains from known genera or species, one should choose strains that are actually functional in resolving the desired pathology before labelling them probiotics.
Collapse
Affiliation(s)
- Wannes Van Holm
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Naiera Zayed
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Katalina Lauwens
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | - Mehraveh Saghi
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | | | - Merve Kübra Aktan
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Lotte Vanbrabant
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Bram Van Holm
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Nico Boon
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Wim Teughels
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium.
| |
Collapse
|
11
|
Yang X, Cai X, Lin J, Zheng Y, Liao Z, Lin W, He X, Zhang Y, Ren X, Liu C. E. Coli LPS-induced calcium signaling regulates the expression of hypoxia-inducible factor 1α in periodontal ligament fibroblasts in a non-hypoxia-dependent manner. Int Immunopharmacol 2024; 128:111418. [PMID: 38176341 DOI: 10.1016/j.intimp.2023.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Periodontitis, an inflammatory disease, can cause significant damage to the oral tissues which support the teeth. During the early development of periodontitis, periodontal ligament fibroblasts (PDLFs) undergo metabolic reprogramming regulated by hypoxia-inducible factor 1α (HIF-1α), which is strongly linked to the progression of inflammation. However, the precise mechanisms by which PDLFs regulate HIF-1α and its associated metabolic reprogramming during early inflammation remain unclear. This study illustrated that brief and low-dose exposure to Escherichia coli (E. coli) lipopolysaccharide (LPS) can serve as a non-hypoxic stimulus, effectively replicating early periodontal inflammatory reactions. This is evidenced by the upregulation of HIF-1α expression and the activation of HIF-1α-mediated crucial glycolytic enzymes, namely lactate dehydrogenase a, pyruvate kinase, and hexokinase 2, concomitant with an augmentation in the inflammatory response within PDLFs. We observed that the effects mentioned and their impact on macrophage polarization were notably attenuated when intracellular and extracellular stores of Ca2+ were depleted using BAPTA-AM and Ca2+-free medium, respectively. Mechanistically, our findings demonstrated that the transcriptional process of HIF-1α is regulated by Ca2+ during E. coli LPS stimulation, mediated through the signal transducer and activator of transcription 3 (STAT3) pathway. Additionally, we observed that the stabilization of intracellular HIF-1α proteins occurs via the endothelin (ET)-1-endothelin A receptor pathway, independent of hypoxia. Taken together, our research outcomes underscore the pivotal involvement of Ca2+ in the onset of early periodontitis by modulating HIF-1α and glycolysis, thereby presenting novel avenues for early therapeutic interventions.
Collapse
Affiliation(s)
- Xia Yang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xuepei Cai
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, China
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Yifan Zheng
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Zhihao Liao
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Weiyin Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - Ying Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China
| | - XiaoHua Ren
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, China.
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, China.
| |
Collapse
|
12
|
Fik VB, Krynytskyi RP, Dudok OV, Podolіyk МV, Kosiuta MA, Fedoniuk LY. Comparative study of oral microbiota in the experimental long-term opioid exposure, after its withdrawal and the use of complex drug correction. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:216-225. [PMID: 38642358 DOI: 10.36740/merkur202402111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
OBJECTIVE Aim: To study changes of dental biofilm microbiota composition during experimental opioid exposure, after its withdrawal and when using of complex drug correction.. PATIENTS AND METHODS Materials and Methods: Microbiological studies (48 rats) included microscopic and bacteriological methods, as well as determination of antibiotic susceptibility of microbial isolates. Ceftriaxone and pentoxifylline were used to correction the changes. RESULTS Results: The action of opioid for 10 weeks caused considerable changes in the microbiocenosis, which was illustrated by a significant increasing of the opportunistic pathogens quantitative indicators and the emergence of pathogenic microbiota. Changes in the microbiocenosis at 6 weeks of opioid exposure and after its withdrawal for 4 weeks were expressed in the appearance of pathogenic microbiota and the absence of significant differences in quantitative indicators of saprophytic and opportunistic microflora compared to similar indicators in animals with 10 weeks opioid exposure. This indicated a slow progression of dysbiotic changes and the inflammatory process in the oral cavity of rats. CONCLUSION Conclusions: After 10 weeks of experiment with opioid administration for 6 weeks and the use of ceftriaxone and pentoxifylline on the background of 4-week opioid withdrawal, a significant reduction of quantitative indicators of opportunistic bacteria and elimination of pathogenic species of microorganisms was determined. The use of complex drug correction on the background of 10 weeks of opioid exposure led to a significant reduction in the quantitative indicators of opportunistic pathogens and contributed to the elimination of most pathogenic species of microbiota under the action of ceftriaxone.
Collapse
Affiliation(s)
- Volodymyr B Fik
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE
| | | | - Olha V Dudok
- DANYLO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE
| | | | - Myroslava A Kosiuta
- PRIVATE HIGHER EDUCATION INSTITUTION "LVIV MEDICAL UNIVERSITY", LVIV, UKRAINE
| | | |
Collapse
|
13
|
Kriauciunas A, Zekonis G, Gedvilaite G, Duseikaitė M, Pileckaitė E, Pacauskiene I, Liutkeviciene R. Vascular Endothelial Growth Factor A serum levels and common gene polymorphisms in generalized periodontitis affected patients. Acta Odontol Scand 2024; 82:74-81. [PMID: 37749912 DOI: 10.1080/00016357.2023.2260000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To evaluate and compare the associations of VEGFA serum levels and SNPs (rs1570360, rs699947, rs3025033, and rs2146323) with periodontitis in study participants grouped by gender. METHODS The study enrolled 261 patients with periodontitis and 441 healthy controls as a reference group. Patients underwent periodontal examination and radiographic analysis to confirm the periodontitis diagnosis. Blood samples were collected, and the DNA salting-out method was used for DNA extraction from peripheral venous blood. Genotyping of VEGFA (rs1570360, rs699947, rs3025033, and rs2146323) was performed using real-time polymerase chain reaction (RT-PCR) and serum level analysis was done for 80 individuals - 40 periodontitis-affected patients and 40 reference group subjects. RESULTS The analysis of VEGFA (rs1570360, rs699947, rs3025033, and rs2146323) showed that the rs3025033 GG genotype was less frequent in the periodontitis group than in the reference group (1.6% vs. 5.7%,p = 0.008). VEGFA serum levels were not statistically significantly different between periodontitis patients and reference group subjects (554.29 (522.38) ng/ml vs. 581.32 (348.16) ng/ml, p = 0.786). Individuals carrying rs1570360, rs699947, rs3025033, and rs2146323 haplotype A-A-G-A had decreased risks of periodontitis, while rare haplotype of VEGFA (rs1570360, rs699947, rs3025033, and rs2146323) was associated with increased odds of periodontitis (OR= 0.42; 95% CI: 0.20-0.85; p < 0.017; OR= 4.08; 95% CI: 1.86-8.94; p < 0.0001, respectively). CONCLUSION The rs3025033 GG genotype and the rs1570360, rs699947, rs3025033, and rs2146323 A-A-G-A haplotypes may play a protective role in the development of periodontitis, but a less common haplotype of the same VEGFA polymorphism may be associated with the risk of developing periodontitis.
Collapse
Affiliation(s)
- Albertas Kriauciunas
- Department of Prosthodontics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gediminas Zekonis
- Department of Prosthodontics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Medical faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Monika Duseikaitė
- Medical faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pharmacy faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Enrika Pileckaitė
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Medical faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Pacauskiene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Institute of Neuroscience, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
14
|
Xu Y, Wang Y, Xiao H, Li Y. Hypoxia dissociates HDAC6/FOXO1 complex and aggregates them into nucleus to regulate autophagy and osteogenic differentiation. J Periodontal Res 2023; 58:1248-1260. [PMID: 37767803 DOI: 10.1111/jre.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This research aimed to elucidate the molecular mechanisms underlying the periodontitis-associated bone loss, with particular emphasis on the contributory role of hypoxic microenvironment in this process. BACKGROUND Periodontitis generally causes alveolar bone loss and is often associated with a hypoxic microenvironment, which affects bone homeostasis. However, the regulating mechanism between hypoxia and jaw metabolism remains unclear. Hypoxia triggers autophagy, which is closely related to osteogenic differentiation, but how hypoxia-induced autophagy regulates bone metabolism is unknown. HDAC6 and FOXO1 are closely related to bone metabolism and autophagy, respectively, but whether they are related to hypoxia-induced bone loss and their internal mechanisms is still unclear. METHODS Established rat nasal obstruction model and hypoxia cell model. Immunohistochemistry was performed to detect the expression and localization of HDAC6 and FOXO1 proteins, analysis of autophagic flux and transmission electron microscopy was used to examine the autophagy level and observe the autophagosomes, co-immunoprecipitation and chromatin immunoprecipitation were preformed to investigate the interaction of HDAC6 and FOXO1. RESULTS Hypoxia causes increased autophagy and reduced osteogenic differentiation in rat mandibles and BMSCs, and blocking autophagy can attenuate hypoxia-induced osteogenic differentiation decrease. Moreover, hypoxia dissociated the FOXO1-HDAC6 complex and accumulated them in the nucleus. Knocking down of FOXO1 or HDAC6 alleviated hypoxia-induced autophagy elevation or osteogenic differentiation reduction by binding to related genes, respectively. CONCLUSION Hypoxia causes mandibular bone loss and autophagy elevation. Mechanically, hypoxia dissociates the FOXO1-HDAC6 complex and aggregates them in the nucleus, whereas HDAC6 decreases osteogenic differentiation and FOXO1 enhances autophagy to inhibit osteogenic differentiation.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yixin Wang
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Hui Xiao
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yongming Li
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
15
|
Hu S, Wang L, Li J, Li D, Zeng H, Chen T, Li L, Xiang X. Catechol-Modified and MnO 2-Nanozyme-Reinforced Hydrogel with Improved Antioxidant and Antibacterial Capacity for Periodontitis Treatment. ACS Biomater Sci Eng 2023; 9:5332-5346. [PMID: 37642176 DOI: 10.1021/acsbiomaterials.3c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.
Collapse
Affiliation(s)
- Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Liping Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuerong Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
16
|
Müller-Heupt LK, Eckelt A, Eckelt J, Groß J, Opatz T, Kommerein N. An In Vitro Study of Local Oxygen Therapy as Adjunctive Antimicrobial Therapeutic Option for Patients with Periodontitis. Antibiotics (Basel) 2023; 12:990. [PMID: 37370309 DOI: 10.3390/antibiotics12060990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a common global disease caused by bacterial dysbiosis leading to tissue destruction, and it is strongly associated with anaerobic bacterial colonization. Therapeutic strategies such as oxygen therapy have been developed to positively influence the dysbiotic microbiota, and the use of oxygen-releasing substances may offer an added benefit of avoiding systemic effects commonly associated with antibiotics taken orally or hyperbaric oxygen therapy. Therefore, the oxygen release of calcium peroxide (CaO2) was measured using a dissolved oxygen meter, and CaO2 solutions were prepared by dissolving autoclaved CaO2 in sterile filtered and deionized water. The effects of CaO2 on planktonic bacterial growth and metabolic activity, as well as on biofilms of Streptococcus oralis and Porphyromonas gingivalis, were investigated through experiments conducted under anaerobic conditions. The objective of this study was to investigate the potential of CaO2 as an antimicrobial agent for the treatment of periodontitis. Results showed that CaO2 selectively inhibited the growth and viability of P. gingivalis (p < 0.001) but had little effect on S. oralis (p < 0.01), indicating that CaO2 has the potential to selectively affect both planktonic bacteria and mono-species biofilms of P. gingivalis. The results of this study suggest that CaO2 could be a promising antimicrobial agent with selective activity for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
17
|
Müller-Heupt LK, Wiesmann-Imilowski N, Schröder S, Groß J, Ziskoven PC, Bani P, Kämmerer PW, Schiegnitz E, Eckelt A, Eckelt J, Ritz U, Opatz T, Al-Nawas B, Synatschke CV, Deschner J. Oxygen-Releasing Hyaluronic Acid-Based Dispersion with Controlled Oxygen Delivery for Enhanced Periodontal Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065936. [PMID: 36983008 PMCID: PMC10059003 DOI: 10.3390/ijms24065936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Nadine Wiesmann-Imilowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeck Str. 1, 55131 Mainz, Germany
| | - Sofia Schröder
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Philipp Bani
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | | | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|
18
|
Tumer H, Orhan K, Aksoy S, Berberoglu A. Cone-beam-computed tomography evaluation of mandibular nutrient canals in patients with periodontal diseases. Niger J Clin Pract 2023; 26:59-64. [PMID: 36751825 DOI: 10.4103/njcp.njcp_210_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background and Aim The aim of this study was to evaluate radiographically the prevalence of mandibular nutrient canals (NCs) in patients with/without periodontal bone loss with aging and to correlate the number of NCs with the severity of bone loss using cone-beam-computed tomography (CBCT). Patients and Methods CBCT examinations of 208 patients were evaluated retrospectively of all patients, 114 had periodontal bone loss, whereas 94 patients were control subjects. Alveolar bone loss investigations were performed according to the Progressive Rate Index. Results NCs were observed in 55% of the control group and 86% of the periodontitis patients. NCs were more prevalent in the elderly age group with periodontal bone loss. In the study group, the NCs were statistically more frequent than in the control subjects (P > 0.05). Conclusion Statistical analysis showed a significant difference between the age groups and the prevalence of NCs increased in patients with periodontal alveolar bone loss with aging (P < 0.05).
Collapse
Affiliation(s)
- H Tumer
- Department of Periodontology, Final International University, Faculty of Dentistry, Mersin 10, Turkey
| | - K Orhan
- Department of Dentomaxillofacial Radiology, University of Ankara, Faculty of Dentistry, Ankara, Turkey
| | - S Aksoy
- Department of Dentomaxillofacial Radiology, Near East University, Faculty of Dentistry, Mersin 10, Turkey
| | - A Berberoglu
- Department of Periodontology, Ada Kent University, Faculty of Dentistry, Mersin 10, Turkey
| |
Collapse
|
19
|
Alsahhaf A, Alali Y, Albeshri S, Subayt AKA, Alomayri A, Abduljabbar T, Vohra F. Clinical, Radiographic, and Inflammatory Peri-Implant Parameters around Narrow Diameter Implant Crowns among Prediabetic and Non-Diabetic Subjects. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121839. [PMID: 36557041 PMCID: PMC9783321 DOI: 10.3390/medicina58121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Background and Objectives: To compare the clinical, radiographic, and inflammatory peri-implant parameters around narrow diameter implants (NDI) supported single and splinted crowns in non-diabetics and prediabetes. Materials and Methods: The clinical and radiographic parameters and the levels of IL-6 and TNF-α in the peri-implant crevicular fluid (PICF) of narrow diameter single (NDISCs) and splinted (NDISPs) crown implants were assessed both in non-diabetics and participants with prediabetes. The glycemic state of the patient was assessed using glycated hemoglobin (HbA1c) levels. The peri-implant soft tissue indices (Plaque index (PI), bleeding on probing (BoP), probing depth (PD)) and marginal bone loss were recorded and compared between the groups. Success of the prosthesis was assessed by the frequency of technical complications and patient satisfaction. Inter-group comparison was performed using ANOVA (one-way analysis of variance) while the normal distribution of dependent variables was calculated using Shapiro-Wilk. A p-value of less than 0.05 was considered to be statistically significant. Results: Sixty participants (30 non-diabetics and 30 with prediabetes) with a total of 178 (118 NDISCs and 60 NDISPs) platform-switched NDIs were a part of the study. Of the 118 NDISCs, 56 were placed in the non-diabetic individuals and 62 were placed in the prediabetes group whereas 30 NDISPs each were placed in both the study groups. The clinical parameters of PI, BoP and PD in the single crown and splinted crown groups showed comparable results. However, a statistically significant difference (p-value of less than 0.05) in PI, BoP and PD and in the values of IL-6 and TNF-α was found when a comparison was made between the non-diabetes and prediabetes group. A total of 91% of the patients were satisfied with the esthetics of the implants while 79% of the patients showed satisfaction with function. Conclusions: All the clinical and radiographic parameters were statistically similar in both single and splinted types of narrow diameter implants. However, the bone loss, probing depth, plaque index, and levels of inflammatory markers were statistically higher in prediabetes as compared to non-diabetes implying that a slight hyperglycemic state impacts peri-implant health.
Collapse
Affiliation(s)
- Abdulaziz Alsahhaf
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Yasser Alali
- Department of Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Sultan Albeshri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Abdullah Alomayri
- College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Correspondence: ; Tel.: +966-013477444
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
20
|
Wang H, Wang X, Ma L, Huang X, Peng Y, Huang H, Gao X, Chen Y, Cao Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci 2022; 1516:300-311. [PMID: 35917205 DOI: 10.1111/nyas.14872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia often occurs in inflammatory tissues, such as tissues affected by periodontitis and apical periodontitis lesions. Mitochondrial biogenesis can be disrupted in hypoxia. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a core factor required for mitochondrial biogenesis. Cementoblasts are root surface lining cells that play an integral role in cementum formation. There is a dearth of research on the effect of hypoxia on cementoblasts and underlying mechanisms, particularly in relation to mitochondrial biogenesis during the hypoxic process. In this study, we found that the expression of hypoxia inducible factor-1α was elevated in apical periodontitis tissues in vivo. In contrast, periapical lesions exhibited a reduction of PGC-1α expression. For in vitro experiments, cobalt chloride (CoCl2 ) was used to induce hypoxia. We observed that CoCl2 -induced hypoxia suppressed the mineralization ability and mitochondrial biogenesis of cementoblasts, accompanied by abnormal mitochondria morphology. Furthermore, we found that CoCl2 blocked the p38 pathway, while it activated the Erk1/2 pathway, with the former upregulating the expression of PGC-1α, while the latter reversed the effects. Overall, our findings demonstrate that mitochondrial biogenesis, especially via PGC-1α, is impaired during cementogenesis in the context of CoCl2 -induced hypoxia, dependent on the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
A meta-analysis on the association between obstructive sleep apnea and periodontitis. Sleep Breath 2022; 27:641-649. [DOI: 10.1007/s11325-022-02668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
|
22
|
Gürsoy UK. Editorial for the Special Issue: Oral Immunology and Periodontitis. Pathogens 2022; 11:pathogens11050564. [PMID: 35631085 PMCID: PMC9146319 DOI: 10.3390/pathogens11050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu, 2, 20520 Turku, Finland
| |
Collapse
|
23
|
Dong C, Hu X, Tripathi AS. A brief review of vitamin D as a potential target for the regulation of blood glucose and inflammation in diabetes-associated periodontitis. Mol Cell Biochem 2022; 477:2257-2268. [PMID: 35478388 DOI: 10.1007/s11010-022-04445-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Diabetes is a metabolic disorder associated with various complications, including periodontitis. The risk of periodontitis is increased in patients with diabetes, while vitamin D deficiency is associated with both diabetes and periodontitis. Thus, there is a need to identify the molecular effects of vitamin D on the regulation of inflammation and glucose in diabetes-associated periodontitis. The Web of Science, Scopus, and PubMed databases were searched for studies of the molecular effects of vitamin D. Molecular effects were reportedly mediated by salivary secretions, interactions of advanced glycation end products (AGEs) with receptors of AGEs (RAGEs), cytokines, and oxidative stress pathways linking diabetes with periodontitis. Vitamin D supplementation attenuates inflammation in diabetes-associated periodontitis by reducing the levels of inflammatory cytokines and numbers of immune cells; it also has antibacterial effects. Vitamin D reduces cytokine levels through regulation of the extracellular signal-related kinase 1/2 and Toll-like receptor 1/2 pathways, along with the suppression of interleukin expression. Glucose homeostasis is altered in diabetes either because of reduced insulin production or decreased insulin sensitivity. These vitamin D-related alterations of glucoregulatory factors may contribute to hyperglycaemia; hyperglycaemia may also lead to alterations of glucoregulatory factors. This review discusses the pathways involved in glucose regulation and effects of vitamin D supplementation on glucose regulation. Further studies are needed to characterise the effects of vitamin D on diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China
| | - Xuzhi Hu
- Department of Stomatology, The People's Hospital of Beilun District, Ningbo, 315800, China.
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|