1
|
Aderanti T, Marshall JM, Thekkiniath J. Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. J Eukaryot Microbiol 2024:e13064. [PMID: 39556081 DOI: 10.1111/jeu.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024]
Abstract
Human babesiosis is a malaria-like, tick-borne infectious disease with a global distribution. Babesiosis is caused by intraerythrocytic, apicomplexan parasites of the genus Babesia. In the United States, human babesiosis is caused by Babesia microti and Babesia duncani. Current treatment for babesiosis includes either the combination of atovaquone and azithromycin or the combination of clindamycin and quinine. However, the side effects of these agents and the resistance posed by these parasites call for alternative approaches for treating human babesiosis. Proteases play several roles in the context of parasitic lifestyle and regulate basic biological processes including cell death, cell progression, and cell migration. Using the SYBR Green-1 assay, we screened a protease inhibitor library that consisted of 160 compounds against B. duncani in vitro and identified 13 preliminary hits. Dose response assays of hit compounds against B. duncani and B. microti under in vitro conditions identified five effective inhibitors against parasite growth. Of these compounds, we chose ixazomib, a proteasome inhibitor as a potential drug for animal studies based on its lower IC50 and a higher therapeutic index in comparison with other compounds. Our results suggest that Babesia proteasome may be an important drug target and that developing this class of drugs may be important to combat human babesiosis.
Collapse
Affiliation(s)
- Temitope Aderanti
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jordan M Marshall
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Jose Thekkiniath
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| |
Collapse
|
2
|
Robbertse L, Fajtová P, Šnebergerová P, Jalovecká M, Levytska V, Barbosa da Silva E, Sharma V, Pachl P, Almaliti J, Al-Hindy M, Gerwick WH, Bouřa E, O’Donoghue AJ, Sojka D. Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Babesia Blood Stage Cultures. ACS OMEGA 2024; 9:44989-44999. [PMID: 39554424 PMCID: PMC11561622 DOI: 10.1021/acsomega.4c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Tick-transmitted Babesia are a major global veterinary threat and an emerging risk to humans. Unlike their Plasmodium relatives, these erythrocyte-infecting Apicomplexa have been largely overlooked and lack specific treatment. Selective targeting of the Babesia proteasome holds promise for drug development. In this study, we screened a library of peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B for their activity against Babesia. Several of these compounds showed activity against both the asexual and sexual blood stages of Plasmodium falciparum. These compounds inactivate β5 proteasome subunit activity in the lysates of Babesia divergens and Babesia microti in the low nanomolar range. Several compounds were tested with the purified B. divergens proteasome and showed IC50 values comparable to carfilzomib, an approved anticancer proteasome inhibitor. They also inhibited B. divergens growth in bovine erythrocyte cultures with solid EC50 values, but importantly, they appeared less toxic to human cells than carfilzomib. These compounds therefore offer a wider therapeutic window and provide new insights into the development of small proteasome inhibitors as selective drugs for babesiosis.
Collapse
Affiliation(s)
- Luïse Robbertse
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, Ceske
Budejovice 370 05, Czech Republic
| | - Pavla Fajtová
- Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, La Jolla, California 92093-0755, United
States
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, Prague 117 20, Czech Republic
| | - Pavla Šnebergerová
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, Ceske
Budejovice 370 05, Czech Republic
- Faculty of
Science, University of South Bohemia, Ceske Budejovice 370 05, Czech Republic
| | - Marie Jalovecká
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, Ceske
Budejovice 370 05, Czech Republic
- Faculty of
Science, University of South Bohemia, Ceske Budejovice 370 05, Czech Republic
| | - Viktoriya Levytska
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, Ceske
Budejovice 370 05, Czech Republic
| | - Elany Barbosa da Silva
- Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, La Jolla, California 92093-0755, United
States
| | - Vandna Sharma
- Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, La Jolla, California 92093-0755, United
States
| | - Petr Pachl
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, Prague 117 20, Czech Republic
| | - Jehad Almaliti
- Center for
Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, La Jolla, California 92093-0212, United
States
| | - Momen Al-Hindy
- Center for
Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, La Jolla, California 92093-0212, United
States
| | - William H. Gerwick
- Center for
Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, San Diego, La Jolla, California 92093-0212, United
States
| | - Evžen Bouřa
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, Prague 117 20, Czech Republic
| | - Anthony J. O’Donoghue
- Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, La Jolla, California 92093-0755, United
States
| | - Daniel Sojka
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, Ceske
Budejovice 370 05, Czech Republic
| |
Collapse
|
3
|
Florin-Christensen M, Sojka D, Ganzinelli S, Šnebergerová P, Suarez CE, Schnittger L. Degrade to survive: the intricate world of piroplasmid proteases. Trends Parasitol 2023; 39:532-546. [PMID: 37271664 DOI: 10.1016/j.pt.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Piroplasmids of the genera Babesia, Theileria, and Cytauxzoon are tick-transmitted parasites with a high impact on animals and humans. They have complex life cycles in their definitive arthropod and intermediate vertebrate hosts involving numerous processes, including invasion of, and egress from, host cells, parasite growth, transformation, and migration. Like other parasitic protozoa, piroplasmids are equipped with different types of protease to fulfill many of such essential processes. Blockade of some key proteases, using inhibitors or antibodies, hinders piroplasmid growth, highlighting their potential usefulness in drug therapies and vaccine development. A better understanding of the functional significance of these enzymes will contribute to the development of improved control measures for the devastating animal and human diseases caused by these pathogens.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic
| | - Sabrina Ganzinelli
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, CZ-37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05 České Budějovice, Czech Republic
| | - Carlos E Suarez
- Washington State University/Animal Disease Research Unit USDA, Pullman, WA, USA
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
4
|
Comparative Degradome Analysis of the Bovine Piroplasmid Pathogens Babesia bovis and Theileria annulata. Pathogens 2023; 12:pathogens12020237. [PMID: 36839509 PMCID: PMC9965338 DOI: 10.3390/pathogens12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Babesia bovis and Theileria annulata are tick-borne hemoprotozoans that impact bovine health and are responsible for considerable fatalities in tropical and subtropical regions around the world. Both pathogens infect the same vertebrate host, are closely related, and contain similar-sized genomes; however, they differ in invertebrate host specificity, absence vs. presence of a schizont stage, erythrocyte invasion mechanism, and transovarial vs. transstadial transmission. Phylogenetic analysis and bidirectional best hit (BBH) identified a similar number of aspartic, metallo, and threonine proteinases and nonproteinase homologs. In contrast, a considerably increased number of S54 serine rhomboid proteinases and S9 nonproteinase homologs were identified in B. bovis, whereas C1A cysteine proteinases and A1 aspartic nonproteinase homologs were found to be expanded in T. annulata. Furthermore, a single proteinase of families S8 (subtilisin-like protein) and C12 (ubiquitin carboxyl-terminal hydrolase), as well as four nonproteinase homologs, one with dual domains M23-M23 and three with S9-S9, were exclusively present in B. bovis. Finally, a pronounced difference in species-specific ancillary domains was observed between both species. We hypothesize that the observed degradome differences represent functional correlates of the dissimilar life history features of B. bovis and T. annulata. The presented improved classification of piroplasmid proteinases will facilitate an informed choice for future in-depth functional studies.
Collapse
|
5
|
Babesia, Theileria, Plasmodium and Hemoglobin. Microorganisms 2022; 10:microorganisms10081651. [PMID: 36014069 PMCID: PMC9414693 DOI: 10.3390/microorganisms10081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host’s red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
Collapse
|
6
|
Montero E, Gray J, Lobo CA, González LM. Babesia and Human Babesiosis. Pathogens 2022; 11:399. [PMID: 35456074 PMCID: PMC9026984 DOI: 10.3390/pathogens11040399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Babesia is a genus of intraerythrocytic protozoan parasites belonging to the exclusively parasitic phylum Apicomplexa [...].
Collapse
Affiliation(s)
- Estrella Montero
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland;
| | - Cheryl Ann Lobo
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 100065, USA;
| | - Luis Miguel González
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| |
Collapse
|