1
|
Monzote L, Machín L, González A, Scull R, Gutiérrez YI, Satyal P, Gille L, Setzer WN. Eugenol-Rich Essential Oil from Pimenta dioica: In Vitro and In Vivo Potentialities against Leishmania amazonensis. Pharmaceuticals (Basel) 2023; 17:64. [PMID: 38256897 PMCID: PMC10819736 DOI: 10.3390/ph17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Pimenta dioica L. is one the most recognized species with diverse biological activities. In this study, in vitro activity and in vivo efficacy of essential oil from P. dioica (EO-Pd) was evaluated. The main compound was also included in the animal studies and its in silico prediction related to biological activities, molecular ligands, drug likeness, and ADME (absorption, distribution, metabolism, and excretion) properties are listed. The chemical composition analyzed by GC-MS retrieved 45 components, which the most abundant compound was the eugenol (80.1%). The EO-Pd was able to inhibit the growth of L. amazonensis (IC50 = 9.7 ± 0.7 and 11.3 ± 2.1 µg/mL, promastigotes and amastigotes, respectively). The cytotoxicity assay showed a CC50 of 104.5 ± 0.9 µg/mL and a selectivity index of 9. In the model of cutaneous leishmaniasis in BALB/c mice, the effect of EO-Pd and eugenol was observed after treatment at 30 mg/kg by intralesional route with 5 administrations every 4 days. In the in silico predictions, some targets that justified the antileishmanial activity of eugenol and good drug like properties for this compound, were obtained. This study showed for first time the potential of EO-Pd to inhibit L. amazonensis, which could be linked to the activity of major compound eugenol.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine “Pedro Kouri”, Havana 17100, Cuba
- Research Network Natural Products against Neglected Diseases (ResNetNPND), 48149 Munster, Germany
| | - Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 13600, Cuba
| | - Adiel González
- Parasitology Department, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine “Pedro Kouri”, Havana 17100, Cuba
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 13600, Cuba
| | - Yamilet I. Gutiérrez
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 13600, Cuba
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria;
| | - William N. Setzer
- Research Network Natural Products against Neglected Diseases (ResNetNPND), 48149 Munster, Germany
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
2
|
Burguete-Mikeo A, Fernández-Rubio C, Peña-Guerrero J, El-Dirany R, Gainza L, Carasa Buj B, Nguewa PA. Characterization of Leishmania Parasites Isolated from Naturally Infected Mammals. Animals (Basel) 2023; 13:2153. [PMID: 37443951 DOI: 10.3390/ani13132153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Leishmaniasis is spreading in Europe, especially in endemic countries such as Italy and Spain, in part due to ongoing climate change and the increase in travel and migration. Although Leishmania infantum is the main agent responsible for this disease in humans and animals, other species and hybrids have been detected. This highlights the need to continue isolating and characterizing Leishmania strains from biological samples of infected hosts. In this study, we characterized the recently isolated parasites L. infantum NAV and L. infantum TDL, obtained from naturally infected mammals (dogs), and we compared them with the widely distributed and studied strain L. infantum BCN 150. Both NAV and TDL promastigotes showed a slower growth rate than BCN 150 and were significantly more sensitive to amphotericin B and miltefosine. Furthermore, the expression of the CYCA gene (involved in cell cycle and proliferation) was significantly downregulated in NAV and TDL isolates. On the other hand, CYC6 (implicated in treatment resistance) and APG9 (related to the recycling of protein under stress conditions and/or while undergoing a differentiation process and treatment resistance) levels were upregulated, compared to those measured in BCN 150. Both isolates displayed a higher infection capacity (>3 amastigotes per macrophage and >70% of infected macrophages) compared to controls (<2 amastigotes/cells and <50% of infected macrophages). Finally, a higher susceptibility to miltefosine treatment was observed in intracellular NAV and TDL amastigotes. In conclusion, TDL and NAV are novel Leishmania isolates that might be useful for in vitro and in vivo assays that will allow a better understanding of the parasite biology in Mediterranean areas.
Collapse
Affiliation(s)
- Aroia Burguete-Mikeo
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
| | - Celia Fernández-Rubio
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
| | - José Peña-Guerrero
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
| | - Rima El-Dirany
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Leonardo Gainza
- Clinica Veterinaria Burlada, Plaza Ezcabazabal 2, E-31600 Burlada, Spain
| | - Belen Carasa Buj
- Clinica Veterinaria Belen Carasa Buj, c/Ximénez de Rada 53, E-31500 Tudela, Spain
| | - Paul A Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
3
|
Flavonoid Derivatives as New Potent Inhibitors of Cysteine Proteases: An Important Step toward the Design of New Compounds for the Treatment of Leishmaniasis. Microorganisms 2023; 11:microorganisms11010225. [PMID: 36677517 PMCID: PMC9866541 DOI: 10.3390/microorganisms11010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, affecting more than 350 million people globally. However, there is currently no vaccine available against human leishmaniasis, and current treatment is hampered by high cost, side-effects, and painful administration routes. It has become a United Nations goal to end leishmaniasis epidemics by 2030, and multitarget drug strategy emerges as a promising alternative. Among the multitarget compounds, flavonoids are a renowned class of natural products, and a structurally diverse library can be prepared through organic synthesis, which can be tested for biological effectiveness. In this study, we synthesised 17 flavonoid analogues using a scalable, easy-to-reproduce, and inexpensive method. All synthesised compounds presented an impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y enzymes, which are highly expressed in the amastigote stage, the target form of the parasite. Compounds 3c, f12a, and f12b were found to be effective against all isoforms. Furthermore, their intermolecular interactions were also investigated through a molecular modelling study. These compounds were highly potent against the parasite and demonstrated low cytotoxic action against mammalian cells. These results are pioneering, representing an advance in the investigation of the mechanisms behind the antileishmanial action of flavonoid derivatives. Moreover, compounds have been shown to be promising leads for the design of other cysteine protease inhibitors for the treatment of leishmaniasis diseases.
Collapse
|
4
|
Ibarra-Meneses AV, Corbeil A, Wagner V, Beaudry F, do Monte-Neto RL, Fernandez-Prada C. Exploring direct and indirect targets of current antileishmanial drugs using a novel thermal proteomics profiling approach. Front Cell Infect Microbiol 2022; 12:954144. [PMID: 35992178 PMCID: PMC9381709 DOI: 10.3389/fcimb.2022.954144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by Leishmania infantum, is an oft-fatal neglected tropical disease. In the absence of an effective vaccine, the control of leishmaniasis relies exclusively on chemotherapy. Due to the lack of established molecular/genetic markers denoting parasite resistance, clinical treatment failure is often used as an indicator. Antimony-based drugs have been the standard antileishmanial treatment for more than seven decades, leading to major drug resistance in certain regions. Likewise, drug resistance to miltefosine and amphotericin B continues to spread at alarming rates. In consequence, innovative approaches are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. To this end, we have implemented a novel approach based on thermal proteome profiling (TPP) to further characterize the mode of action of antileishmanials antimony, miltefosine and amphotericin B, as well as to better understand the mechanisms of drug resistance deployed by Leishmania. Proteins become more resistant to heat-induced denaturation when complexed with a ligand. In this way, we used multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed soluble proteins in WT, antimony-resistant, miltefosine-resistant, and amphotericin B-resistant L. infantum parasites, in the presence (or absence) of the above-mentioned drugs. Bioinformatics analyses were performed, including data normalization, melting profile fitting, and identification of proteins that underwent changes (fold change > 4) caused by complexation with a drug. With this unique approach, we were able to narrow down the regions of the L. infantum proteome that interact with antimony, miltefosine, and amphotericin B; validating previously-identified and unveiling novel drug targets. Moreover, analyses revealed candidate proteins potentially involved in drug resistance. Interestingly, we detected thermal proximity coaggregation for several proteins belonging to the same metabolic pathway (i.e., tryparedoxin peroxidase and aspartate aminotransferase in proteins exposed to antimony), highlighting the importance of these pathways. Collectively, our results could serve as a jumping-off point for the future development of innovative diagnostic tools for the detection and evaluation of antimicrobial-resistant Leishmania populations, as well as open the door for new on-target therapies.
Collapse
Affiliation(s)
- Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Rubens L. do Monte-Neto
- Biotechnology Applied to Pathogens (BAP) - Instituto René Rachou – Fundação Oswaldo Cruz/Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- *Correspondence: Christopher Fernandez-Prada,
| |
Collapse
|
5
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Zhao X, Zhang R, Yu X, Yu N, Shi Y, Shu M, Shen Y. Discovery of Novel Tubulin Polymerization Inhibitors by Utilizing 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubulin is a potential therapeutic target for cancer. Compounds inhibit the polymerization of tubulin or promote the polymerization of tubulin to interfere with the mitotic process of cells, resulting in...
Collapse
|