1
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
2
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
4
|
Abdala A, Alvarez I, Brossel H, Calvinho L, Carignano H, Franco L, Gazon H, Gillissen C, Hamaidia M, Hoyos C, Jacques JR, Joris T, Laval F, Petersen M, Porquet F, Porta N, Ruiz V, Safari R, Suárez Archilla G, Trono K, Willems L. BLV: lessons on vaccine development. Retrovirology 2019; 16:26. [PMID: 31590667 PMCID: PMC6781361 DOI: 10.1186/s12977-019-0488-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efficacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the different issues that we faced during the development of an efficient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efficacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.
Collapse
Affiliation(s)
- Alejandro Abdala
- Estacion Experimental Agropecuaria Rafaela, INTA, 2300, Rafaela, Argentina
| | - Irene Alvarez
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Hélène Brossel
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Luis Calvinho
- Estacion Experimental Agropecuaria Rafaela, INTA, 2300, Rafaela, Argentina
| | - Hugo Carignano
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Lautaro Franco
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Hélène Gazon
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Christelle Gillissen
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Malik Hamaidia
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Clotilde Hoyos
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Jean-Rock Jacques
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Thomas Joris
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Florent Laval
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Marcos Petersen
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Florent Porquet
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | - Natalia Porta
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Vanesa Ruiz
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium
| | | | - Karina Trono
- Instituto de Virología e Innovaciones tecnológicas, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA-CONICET, C.C. 1712, Castelar, Argentina
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liège (ULiège), 4000, Liege, Belgium. .,Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULiège), B34, 1 avenue de l'Hôpital, Sart-Tilman, 4000, Liege, Belgium.
| |
Collapse
|