1
|
Han X, Zhao S, Liu Z, Zhang Y, Zhao G, Zhang C, Tang L, Cui L, Wang Y. Bartonella, Blechomonas and Trypanosoma in fleas from the long-tailed ground squirrel ( Spermophilus undulatus) in northwestern China. Int J Parasitol Parasites Wildl 2024; 24:100958. [PMID: 39040597 PMCID: PMC11261052 DOI: 10.1016/j.ijppaw.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
Fleas are known to be vectors for a variety of pathogens in veterinary medicine. However, no information is available on the presence of Bartonella and Trypanosomatidae in fleas of the long-tailed ground squirrel (LTGR, Spermophilus undulatus). The present study shows detection of these pathogens in LTGR fleas. During 2022-2023, a total of 396 fleas were collected from 91 LTGRs in 4 alpine regions of Xinjiang Uygur Autonomous Region (northwestern China) and grouped into 54 flea pools. Flea species were identified according to morphological characteristics and molecular data. In addition, all flea samples were analyzed for Bartonella with amplification and sequencing of a 380-bp part of the gltA gene and Trypanosomatidae with targeting the 18S rRNA (850-bp) and gGAPDH (820-bp) genes. The flea species included Frontopsylla elatoides elatoides (203), Neopsylla mana (49), and Citellophilus tesquorum dzetysuensis (144). Of 54 flea pools, seven (12.96%) tested positive for Bartonella, and three (5.56%) were positive for Trypanosomatidae. Based on BLASTn and phylogenetic analyses, i) Bartonella washoensis in F. elatoides elatoides and C. tesquorum dzetysuensis, and Bartonella rochalimae in F. elatoides elatoides were identified. Interestingly, a new haplotype within the species Ba. washoensis was discovered in C. tesquorum dzetysuensis; and ii) Blechomonas luni was confirmed in C. tesquorum dzetysuensis and Trypanosoma otospermophili in F. elatoides elatoides. Two Bartonella species and two Trypanosomatidae members were discovered for the first time in fleas from LTGRs. This study broadens our understanding of the geographic distribution and potential vectors for Bartonella and Trypanosomatidae.
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yujiang Zhang
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Guoyu Zhao
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Chunju Zhang
- Tumushuk City Centers for Disease Control and Prevention, 17 Qianhai East Street, Tumushuk City, Xinjiang Uygur Autonomous Region, 843806, People's Republic of China
| | - Lijuan Tang
- Bayingol Vocational and Technical College, People's Republic of China
| | - Lin Cui
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| |
Collapse
|
2
|
Ganzinelli S, Hamšíková Z, Földvári G, Szekeres S, Pfeffer M, Schnittger L, Kazimírová M. Phylogenetic analysis of a novel Hepatozoon species (Hepatozoon sp. SK3) and an additional yet unknown Hepatozoon species (Hepatozoon sp. BV2) besides H. erhardovae in small rodents from Central Europe. Parasitol Res 2024; 123:250. [PMID: 38910209 DOI: 10.1007/s00436-024-08269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Hepatozoon spp. are tick-borne apicomplexan parasites of terrestrial vertebrates that occur worldwide. Tissue samples from small rodents and their parasitizing fleas were sampled for molecular detection and phylogenetic analysis of Hepatozoon-specific 18S rRNA gene region. After alignment and tree inference the Hepatozoon-sequences retrieved from a yellow-necked mouse (Apodemus flavicollis) placed into a strongly supported single clade demonstrating the presence of a novel species, designated Hepatozoon sp. SK3. The mode of transmission of Hepatozoon sp. SK3 is yet unknown. It is important to note that this isolate may be identical with the previously morphologically described Hepatozoon sylvatici infecting Apodemus spp.; however, no sequences are available for comparison. Furthermore, the previously reported variants Hepatozoon sp. BV1/SK1 and BV2/SK2 were detected in bank voles (Clethrionomys glareolus). It has been suggested that these variants should be identified as Hepatozoon erhardovae leading to the assumption that BV1 and BV2 are paralogous 18S rRNA gene loci of this species. Evidence has also been presented that fleas are vectors of H. erhardovae. In this study, we show with high significance that only the Hepatozoon sp. BV1 variant, but not BV2, infects the studied flea species Ctenophthalmus agyrtes, Ctenophthalmus assimilis, and Megabothris turbidus (p < 0.001). This finding suggests that Hepatozoon sp. BV2 represents an additional species besides H. erhardovae (= Hepatozoon sp. BV1), for which alternative arthropod vectors or non-vectorial modes of transmission remain to be identified. Future studies using alternative molecular markers or genome sequencing are required to demonstrate that BV1/SK1 and BV2/SK2 are different Hepatozoon species.
Collapse
Affiliation(s)
- S Ganzinelli
- Instituto de Patobiología Veterinaria (IPVet), CICVyA, INTA-Hurlingham, Los Reseros y Nicolas Repetto s/n, 1686, Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tte. Gral. Juan Domingo Perón 2158, C1040 AAH, Buenos Aires, Argentina
| | - Z Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - G Földvári
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Konkoly-Thege Miklós Út 29-33, 1121, Budapest, Hungary
| | - S Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, István Street 2, 1078, Budapest, Hungary
- HUN-REN-UVMB: Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, István Street 2, 1078, Budapest, Hungary
| | - M Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - L Schnittger
- Instituto de Patobiología Veterinaria (IPVet), CICVyA, INTA-Hurlingham, Los Reseros y Nicolas Repetto s/n, 1686, Hurlingham, Provincia de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tte. Gral. Juan Domingo Perón 2158, C1040 AAH, Buenos Aires, Argentina.
| | - M Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
3
|
Terrestrial and Subterranean Mammals as Reservoirs of Zoonotic Diseases in the Central Part of European Russia. DIVERSITY 2022. [DOI: 10.3390/d15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Russia has a number of historical foci of zoonotic anthropogenic diseases. In Central Russia, the Republic of Mordovia is one of such areas, a region being known to have foci of haemorrhagic fever with renal syndrome (HFRS) and tularemia. It therefore requires continuous monitoring. The role of small terrestrial mammals as reservoirs of zoonoses has been previously proven for the region. The aim of this work is to take an integrated approach to assess the role of terrestrial and subterranean small mammals. Subterranean mammals are often not considered important reservoirs of zoonotic pathogens that cause human morbidity. Among small mammals in the wild environment, the bank vole, the yellow-necked mouse and the house mouse play important roles as vectors of zoonoses. Among wild subterranean mammals, the greater mole rat is important as a vector of tularemia and HFRS. We analyzed homogenized internal organs of these animals (lungs, spleen, kidneys). Of all samples from the greater mole rat, 83% were positive for tularemia antigens and 17% were positive forHFRS. None of the analyzed European moles had antigens of tularemia and HFRS. No double infection with both tularemia and hantavirus was detected in the subterranean mammals. Double infection was found among terrestrial mammals in the bank vole and the forest dormouse.
Collapse
|
4
|
Current Data on Rickettsia felis Occurrence in Vectors, Human and Animal Hosts in Europe: A Scoping Review. Microorganisms 2022; 10:microorganisms10122491. [PMID: 36557744 PMCID: PMC9781214 DOI: 10.3390/microorganisms10122491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Rickettsia felis is an emerging pathogen with increasing reports of human cases and detection in arthropod and animal host species worldwide. In this scoping review we record the newest data reported for R. felis in Europe: the vector and host species found to be infected, and the geographical distribution and prevalence of R. felis infection in vectors and hosts. A total of 15 European countries reported the occurrence of R. felis in hosts and vectors during 2017−2022. The vectors found to be infected by R. felis were flea, tick and mite species; Ctenocephalides felis and Ixodes ricinus were the dominant ones. The hosts found to be infected and/or exposed to R. felis were humans, cats and small mammals. Physicians should be aware of the epidemiology and include illness caused by R. felis in the differential diagnosis of febrile disease. Veterinarians should keep training pet owners on the need for effective year-round arthropod control on their pets, especially for fleas.
Collapse
|
5
|
Kaminskienė E, Paulauskas A, Balčiauskas L, Radzijevskaja J. Bartonella spp. detection in laelapid (Mesostigmata: Laelapidae) mites collected from small rodents in Lithuania. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2022; 47:195-201. [PMID: 36314674 DOI: 10.52707/1081-1710-47.2.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The genus Bartonella contains facultative Gram-negative intracellular bacteria from the family Bartonellaceae that can cause diseases in humans and animals. Various Bartonella species have been detected in rodents' ectoparasites, such as fleas, ticks, mites, and lice. However, the role of laelapid mites (Mesostigmata: Laelapidae) as carriers of Bartonella spp. needs to be confirmed. We aimed to investigate the presence of Bartonella spp. in laelapid mites collected from small rodents in Lithuania using real-time PCR targeting the transfer-messenger RNA/tmRNA (ssrA) gene and to characterize Bartonella strains using nested PCR and sequence analysis of the 16S-23S rRNA intergenic transcribed spacer region (ITS). A total of 271 laelapid mites of five species (Laelaps agilis, Haemogamasus nidi, Eulaelaps stabularis, Myonyssus gigas, and Hyperlaelaps microti) were collected from five rodent species (Apodemus flavicollis, Apodemus agrarius, Clethrionomys glareolus, Micromys minutus, and Microtus oeconomus) during 2015-2016. Bartonella DNA was detected in three mite species L. agilis, M. gigas, and Hg. nidi with an overall prevalence of 11.4%. Sequence analysis of the 16S-23S rRNA ITS region revealed the presence of Bartonella taylorii in L. agilis, Hg. nidi, and M. gigas, and Bartonella grahamii in L. agilis. Our results suggest that laelapid mites are involved in the maintenance of rodent-associated Bartonella spp. in nature. To the best of the authors' knowledge, this is the first study to demonstrate the presence of Bartonella spp. DNA in laelapid mites from small rodents.
Collapse
Affiliation(s)
- Evelina Kaminskienė
- Vytautas Magnus University, Donelaičio str. 58, LT- 44248, Kaunas, Lithuania
| | | | - Linas Balčiauskas
- Nature Research Centre, Akademijos str. 2, LT-08412, Vilnius, Lithuania
| | - Jana Radzijevskaja
- Vytautas Magnus University, Donelaičio str. 58, LT- 44248, Kaunas, Lithuania,
| |
Collapse
|