1
|
Deng H, Zhang X, Su S, Liu Y, Cui L, Zhao J, Rong J. Poly(2-hydroxyethyl methacrylate-co-methacrylated hyaluronan-β-cyclodextrin) hydrogel: A potential contact lens material with high hydrophilicity, good mechanical properties and sustained drug delivery. Int J Biol Macromol 2024; 283:137579. [PMID: 39542329 DOI: 10.1016/j.ijbiomac.2024.137579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A novel poly(2-hydroxyethyl methacrylate-co-methacrylated hyaluronan-β-cyclodextrin) [p(HEMA-co-mHA-β-CD)] hydrogel was developed as a potential contact lens for ophthalmic disease. The hydrogel was synthesized from the copolymerization of 2-hydroxyethyl methacrylate (HEMA) monomer and mHA-β-CD as a hydrophilic macromolecular crosslinker. By adjusting the methacrylate substitution degree in hyaluronan (20-29 %) and the mHA-β-CD content (5-11 %), transparent p(HEMA-co-mHA-β-CD) hydrogels were achieved. p(HEMA-co-m20HA-β-CD) hydrogels exhibited an enhanced tensile modulus (from 0.35 to 0.88 MPa) with a decreased elongation at break (from 255 % to 108 %), meanwhile they showed increased hydrophilicity with a decreased water contact angle (from 83.4° to 48.6°) and an increased equilibrium water content (from 38.2 % to 46.4 %). Increasing the mHA-β-CD content resulted in a higher encapsulation and cumulative release of hydrophilic levofloxacin hydrochloride or hydrophobic puerarin, due to the improved hydrophilicity and the formation of β-CD/drug inclusion complexes. Compared with pHEMA hydrogel, p(HEMA-co-m20HA-β-CD) hydrogels better inhibited the deposition of lysozyme and bovine serum albumin, and the bacterial adhesion against S. aureus and E. coli. The hydrogels were stable at physiological conditions and non-toxic to immortalized human keratinocytes. With good mechanical properties, tear protein deposition resistance, antibacterial activity, and sustained drug delivery capabilities, p(HEMA-co-m20HA-β-CD) hydrogels were identified as a promising contact lens material for eye diseases.
Collapse
Affiliation(s)
- Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Xiong Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Shuxian Su
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
2
|
Voinescu A, Licker M, Muntean D, Musuroi C, Musuroi SI, Izmendi O, Vulpie S, Jumanca R, Munteanu M, Cosnita A. A Comprehensive Review of Microbial Biofilms on Contact Lenses: Challenges and Solutions. Infect Drug Resist 2024; 17:2659-2671. [PMID: 38947374 PMCID: PMC11214797 DOI: 10.2147/idr.s463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Contact lenses (CL) have become an immensely popular means of vision correction, offering comfort to millions worldwide. However, the persistent issue of biofilm formation on lenses raises significant problems, leading to various ocular complications and discomfort. The aim of this review is to develop safer and more effective strategies for preventing and managing microbial biofilms on CL, improving the eye health and comfort of wearers. Taking these into consideration, the present study investigates the intricate mechanisms of biofilm formation, by exploring the interplay between microbial adhesion, the production of extracellular polymeric substances, and the properties of the lens material itself. Moreover, it emphasizes the diverse range of microorganisms involved, encompassing bacteria, fungi, and other opportunistic pathogens, elucidating their implications within lenses and other medical device-related infections and inflammatory responses. Going beyond the challenges posed by biofilms on CL, this work explores the advancements in biofilm detection techniques and their clinical relevance. It discusses diagnostic tools like confocal microscopy, genetic assays, and emerging technologies, assessing their capacity to identify and quantify biofilm-related infections. Finally, the paper delves into contemporary strategies and innovative approaches for managing and preventing biofilms development on CL. In Conclusion, this review provides insights for eye care practitioners, lens manufacturers, and microbiology researchers. It highlights the intricate interactions between biofilms and CL, serving as a foundation for the development of effective preventive measures and innovative solutions to enhance CL safety, comfort, and overall ocular health. Research into microbial biofilms on CL is continuously evolving, with several future directions being explored to address challenges and improve eye health outcomes as far as CL wearers are concerned.
Collapse
Affiliation(s)
- Adela Voinescu
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Monica Licker
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Delia Muntean
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Corina Musuroi
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Clinical Laboratory, “Pius Brinzeu” Emergency Clinical County Hospital, Timisoara, Romania
| | - Silvia Ioana Musuroi
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana Izmendi
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Silvana Vulpie
- Doctoral School “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Romanita Jumanca
- Romanian and Foreign Languages Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihnea Munteanu
- Department IX, Surgery and Ophthalmology “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei Cosnita
- Department IX, Surgery and Ophthalmology “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
3
|
Tribin FE, Lieux C, Maestre-Mesa J, Durkee H, Krishna K, Chou B, Neag E, Tóthová JD, Martinez JD, Flynn HW, Parel JM, Miller D, Amescua G. Clinical Features and Treatment Outcomes of Carbapenem-Resistant Pseudomonas aeruginosa Keratitis. JAMA Ophthalmol 2024; 142:407-415. [PMID: 38512246 PMCID: PMC10958388 DOI: 10.1001/jamaophthalmol.2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/27/2023] [Indexed: 03/22/2024]
Abstract
Importance Evaluation of the microbiological diagnostic profile of multidrug-resistant Pseudomonas aeruginosa keratitis and potential management with rose bengal-photodynamic antimicrobial therapy (RB-PDAT) is important. Objective To document the disease progression of carbapenemase-resistant P aeruginosa keratitis after an artificial tear contamination outbreak. Design, Setting, and Participants This retrospective observation case series included 9 patients 40 years or older who presented at Bascom Palmer Eye Institute and had positive test results for multidrug-resistant P aeruginosa keratitis between January 1, 2022, and October 31, 2023. Main Outcomes and Measures Evaluation of type III secretion phenotype, carbapenemase-resistance genes blaGES and blaVIM susceptibility to antibiotics, and in vitro and in vivo outcomes of RB-PDAT against multidrug-resistant P aeruginosa keratitis. Results Among the 9 patients included in the analysis (5 women and 4 men; mean [SD] age, 73.4 [14.0] years), all samples tested positive for exoU and carbapenemase-resistant blaVIM and blaGES genes. Additionally, isolates were resistant to carbapenems as indicated by minimum inhibitory concentration testing. In vitro efficacy of RB-PDAT indicated its potential application for treating recalcitrant cases. These cases highlight the rapid progression and challenging management of multidrug-resistant P aeruginosa. Two patients were treated with RB-PDAT as an adjuvant to antibiotic therapy and had improved visual outcomes. Conclusions and Relevance This case series highlights the concerning progression in resistance and virulence of P aeruginosa and emphasizes the need to explore alternative therapies like RB-PDAT that have broad coverage and no known antibiotic resistance. The findings support further investigation into the potential effects of RB-PDAT for other multidrug-resistant microbes.
Collapse
Affiliation(s)
- Felipe Echeverri Tribin
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Caroline Lieux
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jorge Maestre-Mesa
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Heather Durkee
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Katherine Krishna
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chou
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Emily Neag
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana D’Amato Tóthová
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaime D. Martinez
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Harry W. Flynn
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean Marie Parel
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Darlene Miller
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Guillermo Amescua
- Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
- Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
4
|
Gitter A, Mena KD, Mendez KS, Wu F, Gerba CP. Eye infection risks from Pseudomonas aeruginosa via hand soap and eye drops. Appl Environ Microbiol 2024; 90:e0211923. [PMID: 38497644 PMCID: PMC11022585 DOI: 10.1128/aem.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Eye infections from bacterial contamination of bulk-refillable liquid soap dispensers and artificial tear eye drops continue to occur, resulting in adverse health outcomes that include impaired vision or eye enucleation. Pseudomonas aeruginosa (P. aeruginosa), a common cause of eye infections, can grow in eye drop containers and refillable soap dispensers to high numbers. To assess the risk of eye infection, a quantitative microbial risk assessment for P. aeruginosa was conducted to predict the probability of an eye infection for two potential exposure scenarios: (i) individuals using bacteria-contaminated eye drops and (ii) contact lens wearers washing their hands with bacteria-contaminated liquid soap prior to placing the lens. The median risk of an eye infection using contaminated eye drops and hand soap for both single and multiple exposure events (per day) ranged from 10-1 to 10-4, with contaminated eye drops having the greater risk. The concentration of P. aeruginosa was identified as the parameter contributing the greatest variance on eye infection risk; therefore, the prevalence and level of bacterial contamination of the product would have the greatest influence on health risk. Using eye drops in a single-use container or with preservatives can mitigate bacterial growth, and using non-refillable soap dispensers is recommended to reduce contamination of hand soap. Given the opportunistic nature of P. aeruginosa and its ability to thrive in unique environments, additional safeguards to mitigate bacterial growth and exposure are warranted.IMPORTANCEPseudomonas aeruginosa (P. aeruginosa) is a pathogen that can persist in a variety of unusual environments and continues to pose a significant risk for public health. This quantitative microbial risk assessment (QMRA) estimates the potential human health risks, specifically for eye infections, associated with exposure to P. aeruginosa in bacteria-contaminated artificial tear eye drops and hand soap. This study applies the risk assessment framework of QMRA to evaluate eye infection risks through both consumer products. The study examines the prevalence of this pathogen in eye drops and soap, as well as the critical need to implement measures that will mitigate bacterial exposure (e.g., single-use soap dispensers and eye drops with preservatives). Additionally, limitations and challenges are discussed, including the need to incorporate data regarding consumer practices, which may improve exposure assessments and health risk estimates.
Collapse
Affiliation(s)
- Anna Gitter
- Department of Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Kristina D. Mena
- Department of Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Karla S. Mendez
- Department of Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Fuqing Wu
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Charles P. Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Petrillo F, Sinoca M, Fea AM, Galdiero M, Maione A, Galdiero E, Guida M, Reibaldi M. Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics (Basel) 2023; 12:1277. [PMID: 37627697 PMCID: PMC10451181 DOI: 10.3390/antibiotics12081277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi represent a very important cause of microbial eye infections, especially in tropical and developing countries, as they could cause sight-threating disease, such as keratitis and ocular candidiasis, resulting in irreversible vision loss. Candida species are among the most frequent microorganisms associated with fungal infection. Although Candida albicans is still the most frequently detected organism among Candida subspecies, an important increase in non-albicans species has been reported. Mycotic infections often represent an important diagnostic-clinical problem due to the difficulties in performing the diagnosis and a therapeutic problem due to the limited availability of commercial drugs and the difficult penetration of antifungals into ocular tissues. The ability to form biofilms is another feature that makes Candida a dangerous pathogen. In this review, a summary of the state-of-the-art panorama about candida ocular pathology, diagnosis, and treatment has been conducted. Moreover, we also focused on new prospective natural compounds, including nanoparticles, micelles, and nanocarriers, as promising drug delivery systems to better cure ocular fungal and biofilm-related infections. The effect of the drug combination has also been examined from the perspective of increasing efficacy and improving the course of infections caused by Candida which are difficult to fight.
Collapse
Affiliation(s)
- Francesco Petrillo
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| | - Marica Sinoca
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
| | - Antonio Maria Fea
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (M.G.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Michele Reibaldi
- Department of Medical Sciences, Eye Clinic, Turin University, 10126 Turin, Italy; (F.P.); (A.M.F.); (M.R.)
| |
Collapse
|
6
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|