1
|
Spasibionek S, Mikołajczyk K, Matuszczak M, Kaczmarek J, Ramzi N, Jędryczka M. HO-CR and HOLL-CR: new forms of winter oilseed rape (Brassica napus L.) with altered fatty acid composition and resistance to selected pathotypes of Plasmodiophora brassicae (clubroot). J Appl Genet 2024; 65:439-452. [PMID: 38637489 PMCID: PMC11310246 DOI: 10.1007/s13353-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
The priority in oilseed rape (Brassica napus L.) research and breeding programs worldwide is to combine different features to develop cultivars tailored to specific applications of this crop. In this study, forms with a modified fatty acid composition of seed oil were successfully combined with a source of resistance to Plasmodiophora brassicae Wor., a harmful protist-causing clubroot. Three HO-type recombinants in F6-F12 generations with oleic acid content of 80.2-82.1% and one HOLL-type F6 inbred mutant recombinant (HOmut × LLmut), with a high oleic acid content (80.9%) and reduced linolenic acid content (2.3%), were crossed with the cultivar Tosca, resistant to several pathotypes of P. brassicae. The work involved genotyping with the use of DNA markers specific for allelic variants of desaturase genes responsible for the synthesis of oleic and linolenic fatty acids, CAPS (FAD2 desaturase, C18:1), and SNaPshot (FAD3 desaturase, C18:3), respectively. Of 350 progenies in the F3 generation, 192 (55%) were selected for further studies. Among them, 80 HO (≥ 72%) lines were identified, 10 of which showed resistance to at least one up to four P. brassicae pathotypes. Thirty lines in the selected progeny contained high oleic acid and less than 5% linolenic acid; eight of them belonged to the HOLL type conferring resistance to at least one pathotype. Two HO lines and two HOLL lines were resistant to four pathotypes. The resulting HO-CR and HOLL-CR inbred lines with altered seed oil fatty acid composition and resistance to P. brassicae represent unique oilseed rape material with the desired combination of valuable traits.
Collapse
Affiliation(s)
- Stanisław Spasibionek
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Katarzyna Mikołajczyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Marcin Matuszczak
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Oilseed Crops, Poznań, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Noor Ramzi
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Wallenhammar AC, Edin E, Jonsson A. Susceptibility of Oilseed Radish ( Raphanus sativus subsp. oleiferus) Cultivars and Various Brassica Crops to Plasmodiophora brassicae. Pathogens 2024; 13:739. [PMID: 39338930 PMCID: PMC11434798 DOI: 10.3390/pathogens13090739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Oilseed radish (OR; Raphanus sativus var. oleiferus) is grown as a cover crop and develops a unique taproot, absorbing nitrogen left by the previous crop. The aim of this project was to investigate the resistance of OR cultivars (cvs.) to Plasmodiophora brassicae, the causal agent of clubroot disease. Twelve market cvs. were compared with cvs. of clubroot-resistant (CR) winter oilseed rape (OSR; Brassica napus) and other selected species of the Brassicaceae family. The study was performed as a replicated bioassay in a growth chamber using a specially composed mixture of field soils holding the natural inoculum of P. brassicae. The results show that the OR cultivars were infected, which implies that OR multiplies the pathogen. The susceptibility of the OR cultivars was not significantly different from that of the CR OSR cultivars Alister and Archimedes, but it was significantly different from that of the OSR cv. Mendel. The disease severity index (DSI) for OR cultivars ranged from 2.3 to 9.3, and disease incidence was 3-17%. The best performance was shown by black radish (Raphanus sativus var. niger) with a DSI of 0.3. For sustainable brassica crop production, we suggest avoiding OR as a cover crop in crop rotations, including OSR or other brassica crops, since there is a risk of increasing inoculum in the soil.
Collapse
Affiliation(s)
| | - Eva Edin
- Rural Economy and Agricultural Society, HS Konsult AB, Brunnby Gård 1, SE-725 97 Västerås, Sweden;
| | - Anders Jonsson
- RISE Research Institutes of Sweden AB, Box 187, SE-532 32 Skara, Sweden
| |
Collapse
|
3
|
Gravot A, Liégard B, Quadrana L, Veillet F, Aigu Y, Bargain T, Bénéjam J, Lariagon C, Lemoine J, Colot V, Manzanares-Dauleux MJ, Jubault M. Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. PLANT COMMUNICATIONS 2024; 5:100824. [PMID: 38268192 PMCID: PMC11121752 DOI: 10.1016/j.xplc.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.
Collapse
Affiliation(s)
- Antoine Gravot
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Benjamin Liégard
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | - Florian Veillet
- IGEPP INRAE, Institut Agro, Université de Rennes, 29260 Ploudaniel, France
| | - Yoann Aigu
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Tristan Bargain
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Juliette Bénéjam
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | | | - Jocelyne Lemoine
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 75005 Paris, France
| | | | - Mélanie Jubault
- IGEPP Institut Agro, INRAE, Université de Rennes, 35650 Le Rheu, France.
| |
Collapse
|
4
|
Zamani-Noor N, Jędryczka M. Pathotyping Systems and Pathotypes of Plasmodiophora brassicae-Navigating toward the Optimal Classification. Pathogens 2024; 13:313. [PMID: 38668268 PMCID: PMC11053400 DOI: 10.3390/pathogens13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Plasmodiophora brassicae Woronin, an obligate biotrophic soil-borne pathogen, poses a significant threat to cruciferous crops worldwide by causing the devastating disease known as clubroot. Pathogenic variability in P. brassicae populations has been recognized since the 1930s based on its interactions with Brassica species. Over time, numerous sets of differential hosts have been developed and used worldwide to explore the pathogenic variability within P. brassicae populations. These sets encompass a range of systems, including the Williams system, the European Clubroot Differential set (ECD), the Brassica napus set, the Japanese Clubroot Differential Set, the Canadian Clubroot Differential Set (CCS), the Korean Clubroot Differential Set, and the Chinese Sinitic Clubroot Differential set (SCD). However, all existing systems possess both advantages as well as limitations regarding the detection of pathotypes from various Brassica species and their corresponding virulence pattern on Brassica genotypes. This comprehensive review aims to compare the main differential systems utilized in classifying P. brassicae pathotypes worldwide. Their strengths, limitations, and implications are evaluated, thereby enhancing our understanding of pathogenic variability.
Collapse
Affiliation(s)
- Nazanin Zamani-Noor
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute (JKI), D-38104 Braunschweig, Germany
| | - Małgorzata Jędryczka
- Pathogen Genetics and Plant Resistance Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| |
Collapse
|
5
|
Zeng L, Zhang Y, Wu Y, Zhang X, Zhao C, Ren L, Huang J, Cheng X, Liu S, Liu L. Pathotype Characterization of Plasmodiophora brassicae by European Clubroot Differential and Williams Sets in China. PLANT DISEASE 2024; 108:847-851. [PMID: 37840291 DOI: 10.1094/pdis-08-23-1571-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Clubroot disease caused by the soil-borne Plasmodiophora brassicae is devastating to Brassicaceae crops and spreading rapidly in China in recent years, resulting in great yield losses annually. Virulence of P. brassicae populations specializes and is in dynamic change in the fields. Information on the pathotypes and their distributions is crucial to control the clubroot disease. Presently, the pathotypes of P. brassicae prevalent in China, however, are not well determined. In this study, we used 16 Brassica hosts, including the European Clubroot Differential (ECD) and Williams sets, to designate the pathotypes of 33 P. brassicae populations from 13 provinces. The 33 P. brassicae populations could be divided into 26 pathotypes by the ECD set or seven pathotypes by the Williams set, revealing ECD16/15/31 and ECD16/31/31 or P4 and P2 as the predominant pathotypes. We found that the Brassica rapa differentials ECD01 to ECD04 showed stable and high levels of resistance to most pathotypes of P. brassicae in China, thereby providing valuable resources for clubroot-resistance breeding of Brassicaceae crops. The ECD set exhibited much higher discernibility and further divided the isolates that belonged to the P4 pathotype into 10 ECD pathotypes. Isolates of ECD16/23/31 and ECD16/15/31 were strongly virulent on Huashuang 5R, the first and widely used clubroot-resistant cultivar of oilseed rape in China. As we learn, 26 pathotypes are the most diverse populations of P. brassicae characterized until now in China. Our study provides new insights into virulence specialization of P. brassicae and their geographical distributions, contributing to exploitation of clubroot-resistant resources and the field layout of the present resistant Brassica crops in China.
Collapse
Affiliation(s)
- Lingyi Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yupo Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chuanji Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Li Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junyan Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohui Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
6
|
Moreno-Velandia CA, Garcia-Arias FL, Dávila-Mora L, Rodríguez E, Villabona-Gélvez A, Revelo-Gómez EG, Marcillo-Paguay CA, Riascos-Ortiz DH, Zuluaga AP. The potential of PGPR and Trichoderma-based bioproducts and resistant cultivars as tools to manage clubroot disease in cruciferous crops. FRONTIERS IN PLANT SCIENCE 2024; 14:1323530. [PMID: 38259940 PMCID: PMC10800447 DOI: 10.3389/fpls.2023.1323530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
The objective of this research was to determine the potential use of eco-friendly technologies to reduce the clubroot disease caused by Plasmodiophora brassicae, the main constraint of cruciferous crops worldwide. Two commercial bioproducts were evaluated in susceptible broccoli, one based on the PGPR consortium (Bacillus amyloliquefaciens, Bacillus pumilus, and Agrobacterium radiobacter K84) and the other one based on Trichoderma koningiopsis Th003 (Tricotec® WG). Additionally, the resistant broccoli cv. Monclano® was tested under two concentrations of resting spores (RS) of P. brassicae, 1 × 103 and 1 × 105 RS g-1 of soil. The first phase of evaluations with broccoli was carried out under a greenhouse, while susceptible broccoli, cauliflower, and red cabbage were included in a subsequent field phase. Tebuconazole + Trifloxystrobin mixture and Fluazinam were included as positive controls. The effectiveness of the bioproducts depended on the nature of the biocontrol agent, the concentration of P. brassicae, and the dose of treatment. Tricotec® showed consistent plant growth promotion but no biocontrol effect against clubroot, and the rhizobacteria-based bioproduct significantly reduced the disease in both greenhouse and field experiments. Higher disease severity was observed with the higher dose of Tricotec®. Under field conditions, the rhizobacteria reduced the incidence progress by 26%, 39%, and 57% under high, medium, and low pressure of the pathogen, respectively. However, no reduction of clubroot severity under high pressure of the pathogen was observed. Complete inhibition of club formation in roots was achieved via the fungicide, but a phytotoxic effect was observed under greenhouse conditions. Fungicides reduced the incidence progress of clubroot, but not the severity under high inoculum pressure in the field. The fungicides, the bacterial treatment, and the combination of bioproducts tended to delay the progress of the disease compared with the negative control and Tricotec alone. The resistant broccoli showed a low level of disease under high concentrations of P. brassicae (less than 10% incidence and up to 2% severity). These results suggested the overall potential of commercial tools based on the PGPR consortium and plant resistance to control P. brassicae. The integration of control measures, the role of Trichoderma spp. in P. brassicae-cruciferous pathosystems, and the need to recover highly infested soils will be discussed.
Collapse
Affiliation(s)
- Carlos Andrés Moreno-Velandia
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| | - Francy Liliana Garcia-Arias
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| | - Lorena Dávila-Mora
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| | - Edwin Rodríguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| | - Alejandro Villabona-Gélvez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Eliana Gisela Revelo-Gómez
- Centro de Investigación Obonuco, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Pasto, Colombia
| | | | - Donald Heberth Riascos-Ortiz
- Centro de Investigación Obonuco, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Pasto, Colombia
| | - Andrea Paola Zuluaga
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| |
Collapse
|
7
|
Xi DD, Gao L, Miao LM, Ge LA, Zhang DY, Zhang ZH, Li XF, Zhu YY, Shen HB, Zhu HF. Changes in Diversity and Composition of Rhizosphere Bacterial and Fungal Community between Resistant and Susceptible Pakchoi under Plasmodiophora brassicae. Int J Mol Sci 2023; 24:16779. [PMID: 38069101 PMCID: PMC10706474 DOI: 10.3390/ijms242316779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plasmodiophora brassicae (P. brassicae) is a soil-born pathogen worldwide and can infect most cruciferous plants, which causes great yield decline and economic losses. It is not well known how microbial diversity and community composition change during P. brassicae infecting plant roots. Here, we employed a resistant and a susceptible pakchoi cultivar with and without inoculation with P. brassicae to analyze bacterial and fungal diversity using 16S rRNA V3-V4 and ITS_V1 regions, respectively. 16S rRNA V3-V4 and ITS_V1 regions were amplified and sequenced separately. Results revealed that both fungal and bacterial diversity increased, and composition was changed in the rhizosphere soil of the susceptible pakchoi compared with the resistant cultivar. In the four groups of R_mock, S_mock, R_10d, and S_10d, the most relatively abundant bacterium and fungus was Proteobacteria, accounting for 61.92%, 58.17%, 48.64%, and 50.00%, respectively, and Ascomycota, accounting for 75.11%, 63.69%, 72.10%, and 90.31%, respectively. A total of 9488 and 11,914 bacteria were observed uniquely in the rhizosphere soil of resistant and susceptible pakchoi, respectively, while only 80 and 103 fungi were observed uniquely in the correlated soil. LefSe analysis showed that 107 and 49 differentially abundant taxa were observed in bacteria and fungi. Overall, we concluded that different pakchoi cultivars affect microbial diversity and community composition, and microorganisms prefer to gather around the rhizosphere of susceptible pakchoi. These findings provide a new insight into plant-microorganism interactions.
Collapse
Affiliation(s)
- Dan-Dan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Li-Ming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Li-Ao Ge
- Jinshan Agricultural Technology Extension Center, Shanghai 201599, China;
| | - Ding-Yu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Zhao-Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Xiao-Feng Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Yu-Ying Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Hai-Bin Shen
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| | - Hong-Fang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Zhuanghang Comprehensive Experiment Station, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.-D.X.); (L.G.); (L.-M.M.); (D.-Y.Z.); (Z.-H.Z.); (X.-F.L.); (Y.-Y.Z.); (H.-B.S.)
| |
Collapse
|