1
|
Cheng Y, Zhao J, Liu Y, Zhang T, Hsiang T, Yu Z, Qin W. Response of the Endophytic Microbiome in Cotinus coggygria Roots to Verticillium Wilt Infection. J Fungi (Basel) 2024; 10:792. [PMID: 39590711 PMCID: PMC11595824 DOI: 10.3390/jof10110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Verticillium wilt caused by Verticillium dahliae Kleb. is a lethal soil-borne fungal disease of Cotinus coggygria. The plant endophytic microbiome plays an important role in maintaining plant health and disease resistance, but it is unclear how the endophytic microbiome of C. coggygria roots varies in response to Verticillium wilt occurrence. In this study, the endophytic microbial diversity, community composition, dominant species, and co-occurrence network of C. coggygria under Verticillium wilt-affected and healthy conditions were assessed using Illumina sequencing. Compared with healthy plants, the bacterial alpha diversity indices of Verticillium wilt-affected plants decreased significantly, while the fungal alpha diversity indices showed obvious increases. The relative abundance of dominant taxa including Proteobacteria, Actinobacteriota, Ascomycota, and Basidiomycota at the phylum level, as well as Gammaproteobacteria, Thermoleophilia, Dothideomycetes, and Agaricomycetes at the class level, differed significantly between Verticillium wilt-affected and healthy plants. Co-occurrence networks revealed that the fungal network of Verticillium wilt-affected roots was denser with more negative interactions, which may be relevant to functional changes from reciprocity to competition in the microbial community, in response to V. dahliae infection. The results enhanced our understanding on the relationships between the endophytic microbiome and Verticillium wilt, which could provide information for the management of this disease in C. coggygria.
Collapse
Affiliation(s)
- Yanli Cheng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Juan Zhao
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Yayong Liu
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Taotao Zhang
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Zhihe Yu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Wentao Qin
- Institute of Plant Protection, Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (Y.L.); (T.Z.)
| |
Collapse
|
2
|
Yi Y, Luan P, Fan M, Wu X, Sun Z, Shang Z, Yang Y, Li C. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. Int J Food Microbiol 2024; 422:110821. [PMID: 38970998 DOI: 10.1016/j.ijfoodmicro.2024.110821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Fusarium graminearum is a destructive fungal pathogen that seriously threatens wheat production and quality. In the management of fungal infections, biological control is an environmentally friendly and sustainable approach. Here, the antagonistic strain ZK-9 with a broad antifungal activity was identified as Bacillus amyloliquefaciens. ZK-9 could produce extracellular enzymes such as pectinase, protease, cellulase, and amylase, as well as plant growth-promoting substances including IAA and siderophore. Lipopeptides extracted from strain ZK-9 had the high inhibitory effects on the mycelia of F. graminearum with the minimum inhibitory concentration (MIC) of 0.8 mg/mL. Investigation on the action mechanism of lipopeptides showed they could change the morphology of mycelia, damage the cell membrane, lower the content of ergosterol and increase the relative conductivity of membrane, cause nucleic acid and proteins leaking out from the cells, and disrupt the cell membrane permeability. Furthermore, metabolomic analysis of F. graminearum revealed the significant differences in the expression of 100 metabolites between the lipopeptides treatment group and the control group, which were associated with various metabolic pathways, mainly including amino acid biosynthesis, pentose, glucuronate and glycerophospholipid metabolism. In addition, strain ZK-9 inhibited Fusarium crown rot (FCR) with a biocontrol efficacy of 82.14 % and increased the plant height and root length by 24.23 % and 93.25 %, respectively. Moreover, the field control efficacy of strain ZK-9 on Fusarium head blight (FHB) was 71.76 %, and the DON content in wheat grains was significantly reduced by 69.9 %. This study puts valuable insights into the antifungal mechanism of lipopeptides against F. graminearum, and provides a promising biocontrol agent for controlling F. graminearum.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| | - Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Minghao Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Xingquan Wu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Zijun Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Yuzhen Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Chakchouk-Mtibaa A, Mechri S, Cheffi Azabou M, Triki MA, Smaoui S, Mellouli L. The novel bacteriocin BacYB1 produced by Leuconostoc mesenteroides YB1: From recent analytical characterization to biocontrol Verticillium dahliae and Agrobacterium tumefaciens. Microb Pathog 2024; 192:106680. [PMID: 38729380 DOI: 10.1016/j.micpath.2024.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.
Collapse
Affiliation(s)
- Ahlem Chakchouk-Mtibaa
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Sondes Mechri
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Manel Cheffi Azabou
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, 3038, Tunisia.
| | - Mohamed Ali Triki
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, 3038, Tunisia.
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| | - Lotfi Mellouli
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
4
|
Yang R, Liu P, Ye W, Chen Y, Wei D, Qiao C, Zhou B, Xiao J. Biological Control of Root Rot of Strawberry by Bacillus amyloliquefaciens Strains CMS5 and CMR12. J Fungi (Basel) 2024; 10:410. [PMID: 38921396 PMCID: PMC11204515 DOI: 10.3390/jof10060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Strawberry root rot caused by Fusarium solani is one of the main diseases of strawberries and significantly impacts the yield and quality of strawberry fruit. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional chemical fungicides. To obtain antagonistic bacteria with a high biocontrol effect on strawberry root rot, over 72 rhizosphere bacteria were isolated from the strawberry rhizosphere soil and screened for their antifungal activity against F. solani by dual culture assay. Among them, strains CMS5 and CMR12 showed the strongest inhibitory activity against F. solani (inhibition rate 57.78% and 65.93%, respectively) and exhibited broad-spectrum antifungal activity. According to the phylogenetic tree based on 16S rDNA and gyrB genes, CMS5 and CMR12 were identified as Bacillus amyloliquefaciens. Lipopeptide genes involved in surfactin, iturin, and fengycin biosynthesis were detected in the DNA genomes of CMS5 and CMR12 by PCR amplification. The genes related to the three major lipopeptide metabolites existed in the DNA genome of strains CMS5 and CMR12, and the lipopeptides could inhibit the mycelial growth of F. solani and resulted in distorted hyphae. The inhibitory rates of lipopeptides of CMS5 and CMR12 on the spore germination of F. solani were 61.00% and 42.67%, respectively. The plant-growth-promoting (PGP) traits in vitro screening showed that CMS5 and CMR12 have the ability to fix nitrogen and secreted indoleacetic acid (IAA). In the potting test, the control efficiency of CMS5, CMR12 and CMS5+CMR12 against strawberry root rot were 65.3%, 67.94% and 88.00%, respectively. Furthermore, CMS5 and CMR12 enhanced the resistance of strawberry to F. solani by increasing the activities of defense enzymes MDA, CAT and SOD. Moreover, CMS5 and CMR12 significantly promoted the growth of strawberry seedlings such as root length, seedling length and seedling fresh weight. This study revealed that B. amyloliquefaciens CMS5 and CMR12 have high potential to be used as biocontrol agents to control strawberry root rot.
Collapse
Affiliation(s)
- Ruixian Yang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Ping Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou 350002, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350002, China
| | - Yuquan Chen
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Daowei Wei
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Cuicui Qiao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Bingyi Zhou
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| | - Jingyao Xiao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471002, China; (P.L.); (Y.C.); (D.W.); (C.Q.); (B.Z.); (J.X.)
| |
Collapse
|
5
|
Li G, Mo Y, Lv J, Han S, Fan W, Zhou Y, Yang Z, Deng M, Xu B, Wang Y, Zhao K. Unraveling verticillium wilt resistance: insight from the integration of transcriptome and metabolome in wild eggplant. FRONTIERS IN PLANT SCIENCE 2024; 15:1378748. [PMID: 38863534 PMCID: PMC11165189 DOI: 10.3389/fpls.2024.1378748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a soil-borne disease affecting eggplant. Wild eggplant, recognized as an excellent disease-resistant resource against verticillium wilt, plays a pivotal role in grafting and breeding for disease resistance. However, the underlying resistance mechanisms of wild eggplant remain poorly understood. This study compared two wild eggplant varieties, LC-2 (high resistance) and LC-7 (sensitive) at the phenotypic, transcriptomic, and metabolomic levels to determine the molecular basis of their resistance to verticillium wilt. These two varieties exhibit substantial phenotypic differences in petal color, leaf spines, and fruit traits. Following inoculation with V. dahliae, LC-2 demonstrated significantly higher activities of polyphenol oxidase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, β-1,3 glucanase, and chitinase than did LC-7. RNA sequencing revealed 4,017 differentially expressed genes (DEGs), with a significant portion implicated in processes associated with disease resistance and growth. These processes encompassed defense responses, cell wall biogenesis, developmental processes, and biosynthesis of spermidine, cinnamic acid, and cutin. A gene co-expression analysis identified 13 transcription factors as hub genes in modules related to plant defense response. Some genes exhibited distinct expression patterns between LC-2 and LC-7, suggesting their crucial roles in responding to infection. Further, metabolome analysis identified 549 differentially accumulated metabolites (DAMs) between LC-2 and LC-7, primarily consisting of compounds such as flavonoids, phenolic acids, lipids, and other metabolites. Integrated transcriptome and metabolome analyses revealed the association of 35 gene-metabolite pairs in modules related to the plant defense response, highlighting the interconnected processes underlying the plant defense response. These findings characterize the molecular basis of LC-2 resistance to verticillium wilt and thus have potential value for future breeding of wilt-resistant eggplant varieties.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yunrong Mo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shu Han
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanyan Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Yousfi S, Krier F, Deracinois B, Steels S, Coutte F, Frikha-Gargouri O. Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease. Microbiol Res 2024; 280:127569. [PMID: 38103466 DOI: 10.1016/j.micres.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.
Collapse
Affiliation(s)
- Sarra Yousfi
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - François Krier
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Barbara Deracinois
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Sébastien Steels
- Université de Liège, UMRt BioEcoAgro 1158-INRAE, équipe Métabolites Secondaires d'Origine Microbienne, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - François Coutte
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France.
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Meshram S, Adhikari TB. Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:364. [PMID: 38337897 PMCID: PMC10856849 DOI: 10.3390/plants13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The tomato (Solanum lycopersicum L.) is consumed globally as a fresh vegetable due to its high nutritional value and antioxidant properties. However, soil-borne diseases can severely limit tomato production. These diseases, such as bacterial wilt (BW), Fusarium wilt (FW), Verticillium wilt (VW), and root-knot nematodes (RKN), can significantly reduce the yield and quality of tomatoes. Using agrochemicals to combat these diseases can lead to chemical residues, pesticide resistance, and environmental pollution. Unfortunately, resistant varieties are not yet available. Therefore, we must find alternative strategies to protect tomatoes from these soil-borne diseases. One of the most promising solutions is harnessing microbial communities that can suppress disease and promote plant growth and immunity. Recent omics technologies and next-generation sequencing advances can help us develop microbiome-based strategies to mitigate tomato soil-borne diseases. This review emphasizes the importance of interdisciplinary approaches to understanding the utilization of beneficial microbiomes to mitigate soil-borne diseases and improve crop productivity.
Collapse
Affiliation(s)
- Shweta Meshram
- Department of Plant Pathology, Lovely Professional University, Phagwara 144402, India;
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Al-Mutar DMK, Noman M, Abduljaleel Alzawar NS, Li D, Song F. Cyclic Lipopeptides of Bacillus amyloliquefaciens DHA6 Are the Determinants to Suppress Watermelon Fusarium Wilt by Direct Antifungal Activity and Host Defense Modulation. J Fungi (Basel) 2023; 9:687. [PMID: 37367623 DOI: 10.3390/jof9060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat to watermelon productivity. We previously characterized six antagonistic bacterial strains, including DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This study investigates the role of extracellular cyclic lipopeptides (CLPs) produced by strain DHA6 in Fusarium wilt suppression. Taxonomic analysis based on the 16S rRNA gene sequence categorized strain DHA6 as Bacillus amyloliquefaciens. MALDI-TOF mass spectrometry identified five families of CLPs, i.e., iturin, surfactin, bacillomycin, syringfactin, and pumilacidin, in the culture filtrate of B. amyloliquefaciens DHA6. These CLPs exhibited significant antifungal activity against Fon by inducing oxidative stress and disrupting structural integrity, inhibiting mycelial growth and spore germination. Furthermore, pretreatment with CLPs promoted plant growth and suppressed watermelon Fusarium wilt by activating antioxidant enzymes (e.g., catalase, superoxide dismutase, and peroxidase) and triggering genes involved in salicylic acid and jasmonic acid/ethylene signaling in watermelon plants. These results highlight the critical roles of CLPs as determinants for B. amyloliquefaciens DHA6 in suppressing Fusarium wilt through direct antifungal activity and modulation of plant defense responses. This study provides a foundation for developing B. amyloliquefaciens DHA6-based biopesticides, serving as both antimicrobial agents and resistance inducers, to effectively control Fusarium wilt in watermelon and other crops.
Collapse
Affiliation(s)
- Dhabyan Mutar Kareem Al-Mutar
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Basra Agriculture Directorate, Almudaina 61008, Iraq
| | - Muhammad Noman
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Qi HY, Wang D, Han D, Song J, Ali M, Dai XF, Zhang XJ, Chen JY. Unlocking antagonistic potential of Bacillus amyloliquefaciens KRS005 to control gray mold. Front Microbiol 2023; 14:1189354. [PMID: 37333651 PMCID: PMC10272387 DOI: 10.3389/fmicb.2023.1189354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
To establish a safe, efficient, and simple biocontrol measure for gray mold disease caused by Botrytis cinerea, the basic characteristics and antifungal activity of KRS005 were studied from multiple aspects including morphological observation, multilocus sequence analysis and typing (MLSA-MLST), physical-biochemical assays, broad-spectrum inhibitory activities, control efficiency of gray mold, and determination of plant immunity. The strain KRS005, identified as Bacillus amyloliquefaciens, demonstrated broad-spectrum inhibitory activities against various pathogenic fungi by dual confrontation culture assays, of which the inhibition rate of B. cinerea was up to 90.3%. Notably, through the evaluation of control efficiency, it was found that KRS005 fermentation broth could effectively control the occurrence of tobacco leaves gray mold by determining the lesion diameter and biomass of B. cinerea on tobacco leaves still had a high control effect after dilution of 100 folds. Meanwhile, KRS005 fermentation broth had no impact on the mesophyll tissue of tobacco leaves. Further studies showed that plant defense-related genes involved in reactive oxygen species (ROS), salicylic acid (SA), and jasmonic acid (JA)-related signal pathways were significantly upregulated when tobacco leaves were sprayed with KRS005 cell-free supernatant. In addition, KRS005 could inhibit cell membrane damage and increase the permeability of B. cinerea. Overall, KRS005, as a promising biocontrol agent, would likely serve as an alternative to chemical fungicides to control gray mold.
Collapse
Affiliation(s)
- Hong-Yue Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiao-Jun Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|