1
|
Kabir F, Plaisance E, Portman A, Marfo A, Cirrincione K, Silva D, Amadi V, Stringer J, Short L. Mpox Viral Lineage Analysis and Technique Development Using Next-generation Sequencing Approach. J Infect Dis 2024; 229:S163-S171. [PMID: 37968965 DOI: 10.1093/infdis/jiad504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In response to Mpox endemic and public health emergency, DCHHS aimed to develop NGS based techniques to streamline Mpox viral clade and lineage analysis. METHODS The Mpox sequencing workflow started with DNA extraction and adapted Illumina's COVIDSeq assay using hMpox primer pools from Yale School of Public Health. Sequencing steps included cDNA amplification, tagmentation, PCR indexing, pooling libraries, sequencing on MiSeq, data analysis, and report generation. The bioinformatic analysis comprised read assembly and consensus sequence mapping to reference genomes and variant identification, and utilized pipelines including Illumina BaseSpace, NextClade, CLC Workbench, Terra.bio for data quality control (QC) and validation. RESULTS In total, 171 mpox samples were sequenced using modified COVIDSeq workflow and QC metrics were assessed for read quality, depth, and coverage. Multiple analysis pipelines identified the West African clade IIb as the only clade during peak Mpox infection from July through October 2022. Analyses also indicated lineage B.1.2 as the dominant variant comprising the majority of Mpox viral genomes (77.7%), implying its geographical distribution in the United States. Viral sequences were uploaded to GISAID EpiPox. CONCLUSIONS We developed NGS workflows to precisely detect and analyze mpox viral clade and lineages aiding in public health genomic surveillance.
Collapse
Affiliation(s)
- Farruk Kabir
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Erin Plaisance
- Dallas County Health and Human Services, Dallas, Texas, USA
| | | | - Agnes Marfo
- Dallas County Health and Human Services, Dallas, Texas, USA
| | | | - David Silva
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Victor Amadi
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Joey Stringer
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Luke Short
- Dallas County Health and Human Services, Dallas, Texas, USA
| |
Collapse
|
2
|
Isabel S, Eshaghi A, Duvvuri VR, Gubbay JB, Cronin K, Li A, Hasso M, Clark ST, Hopkins JP, Patel SN, Braukmann TWA. Targeted amplification-based whole genome sequencing of Monkeypox virus in clinical specimens. Microbiol Spectr 2024; 12:e0297923. [PMID: 38047694 PMCID: PMC10783113 DOI: 10.1128/spectrum.02979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/29/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE We present a protocol to efficiently sequence genomes of the MPXV-causing mpox. This enables researchers and public health agencies to acquire high-quality genomic data using a rapid and cost-effective approach. Genomic data can be used to conduct surveillance and investigate mpox outbreaks. We present 91 mpox genomes that show the diversity of the 2022 mpox outbreak in Ontario, Canada.
Collapse
Affiliation(s)
- S. Isabel
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - A. Eshaghi
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - V. R. Duvvuri
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J. B. Gubbay
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - K. Cronin
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Aimin Li
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - M. Hasso
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - S. T. Clark
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - J. P. Hopkins
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - S. N. Patel
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - T. W. A. Braukmann
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| |
Collapse
|