1
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
3
|
Espinosa Bernal MA, Mena Navarro MP, Arvizu Gómez JL, Saldaña C, Ramos López MÁ, Amaro Reyes A, Escamilla García M, Pacheco Aguilar JR, Moreno VP, Rodríguez Morales JA, Álvarez Hidalgo E, Nuñez Ramírez J, Hernández Flores JL, Campos Guillén J. Biocontrol Activity of Bacillus altitudinis CH05 and Bacillus tropicus CH13 Isolated from Capsicum annuum L. Seeds against Fungal Strains. Microorganisms 2024; 12:1943. [PMID: 39458253 PMCID: PMC11509363 DOI: 10.3390/microorganisms12101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
In this study, seed-surface-associated bacteria from fresh fruits of Capsicum spp. were analyzed to explore potential isolates for biocontrol of phytopathogenic fungal strains. A total of 76 bacterial isolates were obtained from three different species of chili pepper (C. annuum L., C. pubescens R. & P., and C. chinense Jacq.), and two isolates were selected via mycelial growth inhibition assays based on their production of volatile organic compounds (VOCs) against six fungal strains. Genomic analysis identified these isolates as Bacillus altitudinis CH05, with a chromosome size of 3,687,823 bp and with 41.25% G+C, and Bacillus tropicus CH13, with a chromosome size of 5,283,706 bp and with 35.24% G+C. Both bacterial strains showed high mycelial growth inhibition capacities against Sclerotium rolfsii, Sclerotinia sp., Rhizoctonia solani, and Alternaria alternata but lower inhibition capacities against Colletotrichum gloesporoides and Fusarium oxysporum. VOC identification was carried out after 24 h of fermentation with 64 VOCs for B. altitudinis CH05 and 53 VOCs for B. tropicus CH13. 2,5-Dimethyl pyrazine and acetoin had the highest relative abundance values in both bacterial strains. Our findings revealed that seed-surface-associated bacteria on Capsicum spp. have the metabolic ability to produce VOCs for biocontrol of fungal strains and have the potential to be used in sustainable agriculture.
Collapse
Affiliation(s)
- Merle Ariadna Espinosa Bernal
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Mayra Paola Mena Navarro
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Jackeline Lizzeta Arvizu Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, Mexico;
| | - Carlos Saldaña
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias S/N, Querétaro 76220, Querétaro, Mexico;
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Aldo Amaro Reyes
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Monserrat Escamilla García
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Juan Ramiro Pacheco Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Victor Pérez Moreno
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - José Alberto Rodríguez Morales
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico;
| | - Erika Álvarez Hidalgo
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | - Jorge Nuñez Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| | | | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Querétaro, Mexico; (M.A.E.B.); (M.P.M.N.); (M.Á.R.L.); (A.A.R.); (M.E.G.); (J.R.P.A.); (V.P.M.); (E.Á.H.); (J.N.R.)
| |
Collapse
|
4
|
Zhang MT, Bao YQ, Feng BY, Xu LR, Zhang YT, Wang EX, Chen YP. Impact of a Potent Strain of Plant Growth-Promoting Bacteria (PGPB), Bacillus subtilis S1 on Bacterial Community Composition, Enzymatic Activity, and Nitrogen Content in Cucumber Rhizosphere Soils. Curr Microbiol 2024; 81:358. [PMID: 39285060 DOI: 10.1007/s00284-024-03876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
Abstract
Antagonistic bacterial strains from Bacillus spp. have been widely studied and utilized in the biocontrol of phytopathogens and the promotion of plant growth, but their impacts on the rhizosphere microecology when applied to crop plants are unclear. Herein, the effects of applying the antagonistic bacterium Bacillus subtilis S1 as a biofertilizer on the rhizosphere microecology of cucumbers were investigated. In a pot experiment on cucumber seedlings inoculated with S1, 3124 bacterial operational taxonomic units (OTUs) were obtained from the rhizosphere soils using high-throughput sequencing of 16S rRNA gene amplicons, and the most abundant phylum was Proteobacteria that accounted for 49.48% in the bacterial community. S1 treatment significantly reduced the abundances of soil bacterial taxa during a period of approximately 30 days but did not affect bacterial diversity in the rhizosphere soils of cucumbers. The enzymatic activities of soil nitrite reductase (S-Nir) and dehydrogenase (S-DHA) were significantly increased after S1 fertilization. However, the activities of soil urease (S-UE), cellulase (S-CL), and sucrase (S-SC) were significantly reduced compared to the control group. Additionally, the ammonium- and nitrate-nitrogen contents of S1-treated soil samples were significantly lower than those of the control group. S1 fertilization reshaped the rhizosphere soil bacterial community of cucumber plants. The S-CL activity and nitrate-nitrogen content in rhizosphere soil affected by S1 inoculation play important roles in altering the abundance of rhizosphere soil microbiota.
Collapse
Affiliation(s)
- Meng-Ting Zhang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Qing Bao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bao-Yun Feng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu-Rong Xu
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Ting Zhang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Er-Xing Wang
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun-Peng Chen
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Ministry of Science and Technology, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai, 200093, China.
| |
Collapse
|
5
|
Jeong SK, Han SE, Vasantha-Srinivasan P, Jung WJ, Maung CEH, Kim KY. Agro Active Potential of Bacillus subtilis PE7 against Didymella bryoniae (Auersw.), the Causal Agent of Gummy Stem Blight of Cucumis melo. Microorganisms 2024; 12:1691. [PMID: 39203532 PMCID: PMC11357386 DOI: 10.3390/microorganisms12081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial agents such as the Bacillus species are recognized for their role as biocontrol agents against various phytopathogens through the production of diverse bioactive compounds. This study evaluates the effectiveness of Bacillus subtilis PE7 in inhibiting the growth of Didymella bryoniae, the pathogen responsible for gummy stem blight (GSB) in cucurbits. Dual culture assays demonstrate significant antifungal activity of strain PE7 against D. bryoniae. Volatile organic compounds (VOCs) produced by strain PE7 effectively impede mycelial formation in D. bryoniae, resulting in a high inhibition rate. Light microscopy revealed that D. bryoniae hyphae exposed to VOCs exhibited abnormal morphology, including swelling and excessive branching. Supplementing a potato dextrose agar (PDA) medium with a 30% B. subtilis PE7 culture filtrate significantly decreased mycelial growth. Moreover, combining a 30% culture filtrate with half the recommended concentration of a chemical fungicide yielded a more potent antifungal effect than using the full fungicide concentration alone, inducing dense mycelial formation and irregular hyphal morphology in D. bryoniae. Strain PE7 was highly resilient and was able to survive in fungicide solutions. Additionally, B. subtilis PE7 enhanced the nutrient content, growth, and development of melon plants while mitigating the severity of GSB compared to fungicide and fertilizer treatments. These findings highlight B. subtilis PE7 as a promising biocontrol candidate for integrated disease management in crop production.
Collapse
Affiliation(s)
- Seo Kyoung Jeong
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
| | - Seong Eun Han
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Woo Jin Jung
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Chaw Ei Htwe Maung
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Kil Yong Kim
- Department of Plant Protection and Quarantine, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.J.); (W.J.J.)
- Department of Agricultural Chemistry, Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
6
|
Sam-On MFS, Mustafa S, Yusof MT, Mohd Hashim A, Ku Aizuddin KNA. Exploring the Global Trends of Bacillus, Trichoderma and Entomopathogenic Fungi for Pathogen and Pest Control in Chili Cultivation. Saudi J Biol Sci 2024; 31:104046. [PMID: 38983130 PMCID: PMC11231758 DOI: 10.1016/j.sjbs.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ku Nur Azwa Ku Aizuddin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Chen X, Zhang Y, Chao S, Song L, Wu G, Sun Y, Chen Y, Lv B. Biocontrol potential of endophytic Bacillus subtilis A9 against rot disease of Morchella esculenta. Front Microbiol 2024; 15:1388669. [PMID: 38873148 PMCID: PMC11169702 DOI: 10.3389/fmicb.2024.1388669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Morchella esculenta is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by Lecanicillium aphanocladii, pose a serious threat to the quality and yield of M. esculenta. Biological control is one of the effective ways to control fungal diseases. Methods and results In this study, an effective endophytic B. subtilis A9 for the control of M. esculenta rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from M. esculenta, of which the antagonistic effect of Bacillus subtilis A9 on L. aphanocladii G1 reached 72.2% in vitro tests. Biological characteristics and genomic features of B. subtilis A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that B. subtilis A9 affected the mycelium and spores of L. aphanocladii G1. In field experiments, the biological control effect of B. subtilis A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of B. subtilis A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, B. subtilis A9 considerably enhanced the M. esculenta activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT). Conclusion This study presents the innovative utilization of B. subtilis A9, for effectively controlling M. esculenta rot disease. This will lay a foundation for biological control in Morchella, which may lead to the improvement of new biocontrol agents for production.
Collapse
Affiliation(s)
- Xue Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - ShengQian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - LiLi Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - GuoGan Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - YiFan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - BeiBei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
8
|
Iqbal O, Syed RN, Rajput NA, Wang Y, Lodhi AM, Khan R, Jibril SM, Atiq M, Li C. Antagonistic activity of two Bacillus strains against Fusarium oxysporum f. sp. capsici ( FOC-1) causing Fusarium wilt and growth promotion activity of chili plant. Front Microbiol 2024; 15:1388439. [PMID: 38860216 PMCID: PMC11163047 DOI: 10.3389/fmicb.2024.1388439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Fusarium oxysporum f. sp. capsici (Foc) poses a significant position in agriculture that has a negative impact on chili plant in terms of growth, fruit quality, and yield. Biological control is one of the promising strategies to control this pathogen in crops. Chili is considered as one of the most important crops in the Hyderabad region that is affected by Fusarium wilt disease. The pathogen was isolated from the infected samples in the region and was confirmed by morphological characteristics and PCR with a band of 488 bp. The bacterial strains were isolated from the rhizosphere soil of healthy plant and also confirmed by PCR with a band of 1,542 bp.The molecular characterization of the fungal and bacterial strain has shown 99.9% homology with the retrieved sequences of Fusarium oxysporum f. sp. capsici and Bacillus subtilis from NCBI. The 1-month-old Ghotki chili plants were inoculated with 1×105 cfu spore/ml-1 suspension and confirmed that the FOC-1 is responsible for chili Fusarium wilt disease. Subsequently, among the 33 screened Bacillus strains, only 11 showed antagonistic activity against F. oxysporum. Out of these, only two strains (AM13 and AM21) have shown maximum antagonistic activity against the pathogen by reducing the infection and promoting growth parameters of chili plants under both in vitro and greenhouse conditions. The study suggested that biological control is the most promising control strategy for the management of Fusarium wilt of chili in the field.
Collapse
Affiliation(s)
- Owais Iqbal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rehana Naz Syed
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Abdul Mubeen Lodhi
- Department of Plant Protection, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Rizwan Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Li B, He X, Guo S, Li D, Wang Y, Meng X, Dai P, Hu T, Cao K, Wang S. Characterization of Bacillus amyloliquefaciens BA-4 and its biocontrol potential against Fusarium-related apple replant disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1370440. [PMID: 38708392 PMCID: PMC11067707 DOI: 10.3389/fpls.2024.1370440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.
Collapse
Affiliation(s)
- Bo Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoxing He
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Saiya Guo
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Dongxu Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Nihorimbere G, Korangi Alleluya V, Nimbeshaho F, Nihorimbere V, Legrève A, Ongena M. Bacillus-based biocontrol beyond chemical control in central Africa: the challenge of turning myth into reality. FRONTIERS IN PLANT SCIENCE 2024; 15:1349357. [PMID: 38379944 PMCID: PMC10877027 DOI: 10.3389/fpls.2024.1349357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Agricultural productivity in the Great Lakes Countries of Central Africa, including Burundi, Rwanda, and the Democratic Republic of Congo, is affected by a wide range of diseases and pests which are mainly controlled by chemical pesticides. However, more than 30% of the pesticides used in the region are banned in European Union due to their high toxicity. Globally available safe and eco-friendly biological alternatives to chemicals are virtually non-existent in the region. Bacillus PGPR-based biocontrol products are the most dominant in the market and have proven their efficacy in controlling major plant diseases reported in the region. With this review, we present the current situation of disease and pest management and urge the need to utilize Bacillus-based control as a possible sustainable alternative to chemical pesticides. A repertoire of strains from the Bacillus subtilis group that have shown great potential to antagonize local pathogens is provided, and efforts to promote their use, as well as the search for indigenous and more adapted Bacillus strains to local agro-ecological conditions, should be undertaken to make sustainable agriculture a reality in the region.
Collapse
Affiliation(s)
- Gaspard Nihorimbere
- Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium
- Unité de défense des végétaux, Institut des Sciences Agronomiques du Burundi, Bujumbura, Burundi
| | - Virginie Korangi Alleluya
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Chemical and Agricultural Industries, Faculty of Agricultural Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - François Nimbeshaho
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Laboratoire de Nutrition-Phytochimie, d’Ecologie et d’Environnement Appliquée, Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Institut de Pédagogie Appliquée, Université du Burundi, Bujumbura, Burundi
| | - Venant Nihorimbere
- Département des Sciences et Technologie des Aliments, Faculté de Bio-Ingénierie, Université du Burundi, Bujumbura, Burundi
| | - Anne Legrève
- Phytopathology- Applied Microbiology, Earth, and Life Institute, UCLouvain, Louvain-la-neuve, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|