1
|
Kula A, Jablonska S, Avalos L, Jensen T, Appleberry H, Putonti C. Two draft genome assemblies of Staphylococcus aureus strains isolated from a cheek swab of a healthy female participant. Microbiol Resour Announc 2024; 13:e0048824. [PMID: 39162462 PMCID: PMC11385107 DOI: 10.1128/mra.00488-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen often commensal within the nasal and oral cavities. Here we present the genomes of S. aureus O139-S and O139-NS, both isolated from the cheek swab of a healthy female participant. While found in the same sample, the two strains displayed distinct colony morphologies.
Collapse
Affiliation(s)
- Alex Kula
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Sandra Jablonska
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Lexi Avalos
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Tyler Jensen
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Helen Appleberry
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Oliveira MC, Boriollo MFG, de Souza AC, da Silva TA, da Silva JJ, Magalhães-Guedes KT, Dias CTDS, Bernardo WLDC, Höfling JF, de Sousa CP. Oral Staphylococcus Species and MRSA Strains in Patients with Orofacial Clefts Undergoing Surgical Rehabilitation Diagnosed by MALDI-TOF MS. Pathogens 2024; 13:763. [PMID: 39338954 PMCID: PMC11434827 DOI: 10.3390/pathogens13090763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the occurrence and dynamics of oral Staphylococcus species in patients with orofacial clefts undergoing surgical rehabilitation treatment. Patients (n = 59) were statistically stratified and analyzed (age, gender, types of orofacial clefts, surgical history, and types of previous surgical rehabilitation). Salivary samples were obtained between hospitalization and the return to the specialized medical center. Microbiological diagnosis was performed by classical methods, and MALDI-TOF MS. MRSA strains (SCCmec type II, III, and IV) were characterized by the Decision Tree method. A total of 33 (55.9%) patients showed oral staphylococcal colonization in one, two, or three sampling steps. A high prevalence has been reported for S. aureus (including HA-, MRSA and CA-MRSA), followed by S. saprophyticus, S. epidermidis, S. sciuri, S. haemolyticus, S. lentus, S. arlettae, and S. warneri. The dynamics of oral colonization throughout surgical treatment and medical follow-up may be influenced by (i) imbalances in staphylococcal maintenance, (ii) efficiency of surgical asepsis or break of the aseptic chain, (iii) staphylococcal neocolonization in newly rehabilitated anatomical oral sites, and (iv) total or partial maintenance of staphylococcal species. The highly frequent clinical periodicity in specialized medical and dental centers may contribute to the acquisition of MRSA in these patients.
Collapse
Affiliation(s)
- Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
- Center for Nursing and Health, State University of Southwest Bahia (UESB), José Moreira Sobrinho Avenue, Jequié 45205-490, BA, Brazil
| | - Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
- Department of Morphology and Pathology & Biotechnology Graduate Program (PPGBiotec), Center for Biological and Health Sciences (CCBS), Federal University of São Carlos (UFSCar), Km 235 Washington Luís Road, São Carlos 13565-905, SP, Brazil;
| | - Angélica Cristina de Souza
- Department of Biology, Federal University of Lavras (UFLA), s/n Edmir Sá Santos Rotary Interchange, Lavras 37203-202, MG, Brazil;
| | - Thaísla Andrielle da Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Karina Teixeira Magalhães-Guedes
- Department of Bromatological Analysis, Pharmacy Faculty, Federal University of Bahia (UFBA), 147 Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil
| | - Carlos Tadeu dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), 11 Pádua Dias Ave, Piracicaba 13418-900, SP, Brazil;
| | - Wagner Luís de Carvalho Bernardo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - José Francisco Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba 13414-903, SP, Brazil; (M.C.O.); (T.A.d.S.); (J.J.d.S.); (W.L.d.C.B.); (J.F.H.)
| | - Cristina Paiva de Sousa
- Department of Morphology and Pathology & Biotechnology Graduate Program (PPGBiotec), Center for Biological and Health Sciences (CCBS), Federal University of São Carlos (UFSCar), Km 235 Washington Luís Road, São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
3
|
Chmielewski M, Załachowska O, Komandera D, Albert A, Wierzbowska M, Kwapisz E, Katkowska M, Gębska A, Garbacz K. The Oral Cavity-Another Reservoir of Antimicrobial-Resistant Staphylococcus aureus? Antibiotics (Basel) 2024; 13:649. [PMID: 39061331 PMCID: PMC11273406 DOI: 10.3390/antibiotics13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Staphylococcus aureus is one of the most common potentially pathogenic bacteria that may asymptomatically colonize many sites of healthy carriers. Non-nasal carriage, especially in the oral cavity, and its role in transmitting antimicrobial-resistant S. aureus strains in the healthcare community, is poorly understood. This study aimed to assess the prevalence and antimicrobial susceptibility of S. aureus in both oral and nasal cavities among preclinical dentistry students. A total of 264 oral and nasal swabs were taken from 132 participants, and all specimens were cultured using standard diagnostic procedures and antimicrobial susceptibility testing (EUCAST). The prevalence of S. aureus exclusively in the nasal (11.4%) or oral (9.1%) cavity was comparable, while concurrent oral and nasal carriage was present in 27.3% of participants. Although antibiotic resistance rates observed in both oral and nasal isolates were similar (ranging from 2.7% to 95.5%), 16.7% of carriers exhibited distinct antibiotic resistance profiles between oral and nasal isolates. Three (2.7%) methicillin-resistant S. aureus (MRSA) were isolated from the mouth and nose but multidrug resistance (27.3%) was more frequent in the oral than in the nasal isolates: 34% and 21.1%, respectively. This study demonstrated that preclinical dentistry students have a similar rate of oral S. aureus carriage as the nasal carriage rate, and that the oral cavity can be colonized by antimicrobial-resistant strains that do not originate from the nose. Consequently, the oral cavity seems to be an unjustly overlooked body site in screening for S. aureus carriage.
Collapse
Affiliation(s)
- Marek Chmielewski
- Oral Microbiology Student Scientific Club, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.C.); (O.Z.); (D.K.); (A.A.)
| | - Oliwia Załachowska
- Oral Microbiology Student Scientific Club, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.C.); (O.Z.); (D.K.); (A.A.)
| | - Dominika Komandera
- Oral Microbiology Student Scientific Club, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.C.); (O.Z.); (D.K.); (A.A.)
| | - Adrian Albert
- Oral Microbiology Student Scientific Club, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.C.); (O.Z.); (D.K.); (A.A.)
| | - Maria Wierzbowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.W.); (E.K.); (M.K.)
| | - Ewa Kwapisz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.W.); (E.K.); (M.K.)
| | - Marta Katkowska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.W.); (E.K.); (M.K.)
| | - Alina Gębska
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.W.); (E.K.); (M.K.)
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland; (M.W.); (E.K.); (M.K.)
| |
Collapse
|
4
|
Kusaka S, Haruta A, Kawada-Matsuo M, Nguyen-Tra Le M, Yoshikawa M, Kajihara T, Yahara K, Hisatsune J, Nomura R, Tsuga K, Ohge H, Sugai M, Komatsuzawa H. Oral and rectal colonization of methicillin-resistant Staphylococcus aureus in long-term care facility residents and their association with clinical status. Microbiol Immunol 2024; 68:75-89. [PMID: 38230847 DOI: 10.1111/1348-0421.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Staphylococcus aureus is a commensal bacterium in humans, but it sometimes causes opportunistic infectious diseases such as suppurative skin disease, pneumonia, and enteritis. Therefore, it is important to determine the prevalence of S. aureus and methicillin-resistant S. aureus (MRSA) in individuals, especially older adults. In this study, we investigated the prevalence of S. aureus and MRSA in the oral cavity and feces of residents in long-term care facilities (LTCFs). S. aureus was isolated from the oral cavity of 61/178 (34.3%) participants, including 28 MRSA-positive participants (15.7%), and from the feces of 35/127 (27.6%) participants, including 16 MRSA-positive participants (12.6%). S. aureus and MRSA were isolated from both sites in 19/127 individuals (15.0%) and 10/127 individuals (7.9%), respectively. Among 19 participants with S. aureus isolation from both sites, 17 participants showed the same sequence type (ST) type. Then, we analyzed the correlation of S. aureus and MRSA in the oral cavity and rectum with the participant's condition. S. aureus and MRSA positivity in the oral cavity was significantly related to tube feeding, while there was no correlation of rectal S. aureus/MRSA with any factors. Our findings regarding the oral inhabitation of MRSA and its risk factors indicate the importance of considering countermeasures against MRSA infection in LTCFs.
Collapse
Affiliation(s)
- Satoru Kusaka
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Azusa Haruta
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mineka Yoshikawa
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Toshiki Kajihara
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junzo Hisatsune
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|