1
|
Abavisani M, Khoshrou A, Eshaghian S, Karav S, Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. J Drug Target 2025; 33:341-367. [PMID: 39485073 DOI: 10.1080/1061186x.2024.2424895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilising their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. The combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souzan Eshaghian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Aggarwal M, Patra A, Awasthi I, George A, Gagneja S, Gupta V, Capalash N, Sharma P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur J Med Chem 2024; 279:116833. [PMID: 39243454 DOI: 10.1016/j.ejmech.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The growing prevalence of MDR and XDR bacterial pathogens is posing a critical threat to global health. Traditional antibiotic development paths have encountered significant challenges and are drying up thus necessitating innovative approaches. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, offers a promising alternative to combat resistant pathogens. By leveraging pre-existing safety and efficacy data, drug repurposing accelerates the development of new antimicrobial therapy regimes. This review explores the potential of repurposing existing FDA approved drugs against the ESKAPE and other clinically relevant bacterial pathogens and delves into the identification of suitable drug candidates, their mechanisms of action, and the potential for combination therapies. It also describes clinical trials and patent protection of repurposed drugs, offering perspectives on this evolving realm of therapeutic interventions against drug resistance.
Collapse
Affiliation(s)
- Manya Aggarwal
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Anushree Patra
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Ishita Awasthi
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Annu George
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Simran Gagneja
- Departmen of Microbiology, Panjab University, Chandigarh, India
| | - Varsha Gupta
- Department of Microbiology, Government Multi-speciality hospital, Sector 16, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Departmen of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Antimicrobial Activity of Sertraline on Listeria monocytogenes. Int J Mol Sci 2023; 24:ijms24054678. [PMID: 36902108 PMCID: PMC10002541 DOI: 10.3390/ijms24054678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
We explored the antimicrobial activity of sertraline on Listeria monocytogenes and further investigated the effects of sertraline on biofilm formation and the virulence gene expression of L. monocytogenes. The minimum inhibitory concentration and minimum bactericidal concentration for sertraline against L. monocytogenes were in the range of 16-32 μg/mL and 64 μg/mL, respectively. Sertraline-dependent damage of the cell membrane and a decrease in intracellular ATP and pHin in L. monocytogenes were observed. In addition, sertraline reduced the biofilm formation efficiency of the L. monocytogenes strains. Importantly, low concentrations (0.1 μg/mL and 1 μg/mL) of sertraline significantly down-regulated the expression levels of various L. monocytogens virulence genes (prfA, actA, degU, flaA, sigB, ltrC and sufS). These results collectively suggest a role of sertraline for the control of L. monocytogenes in the food industry.
Collapse
|
4
|
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J Fungi (Basel) 2023; 9:275. [PMID: 36836389 PMCID: PMC9961077 DOI: 10.3390/jof9020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
Collapse
Affiliation(s)
- Flaviane M. Galvão-Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos H. L. Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Tamires A. Bitencourt
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
5
|
Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics (Basel) 2022; 11:antibiotics11060816. [PMID: 35740222 PMCID: PMC9220406 DOI: 10.3390/antibiotics11060816] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many “repurposed drugs” displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.
Collapse
|
6
|
González A, Casado J, Gündüz MG, Santos B, Velázquez-Campoy A, Sarasa-Buisan C, Fillat MF, Montes M, Piazuelo E, Lanas Á. 1,4-Dihydropyridine as a Promising Scaffold for Novel Antimicrobials Against Helicobacter pylori. Front Microbiol 2022; 13:874709. [PMID: 35694298 PMCID: PMC9174938 DOI: 10.3389/fmicb.2022.874709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022] Open
Abstract
The increasing occurrence of multidrug-resistant strains of the gastric carcinogenic bacterium Helicobacter pylori threatens the efficacy of current eradication therapies. In a previous work, we found that several 1,4-dihydropyridine (DHP)-based antihypertensive drugs exhibited strong bactericidal activities against H. pylori by targeting the essential response regulator HsrA. To further evaluate the potential of 1,4-DHP as a scaffold for novel antimicrobials against H. pylori, we determined the antibacterial effects of 12 novel DHP derivatives that have previously failed to effectively block L- and T-type calcium channels. Six of these molecules exhibited potent antimicrobial activities (MIC ≤ 8 mg/L) against three different antibiotic-resistant strains of H. pylori, while at least one compound resulted as effective as metronidazole. Such antimicrobial actions appeared to be specific against Epsilonproteobacteria, since no deleterious effects were appreciated on Escherichia coli and Staphylococcus epidermidis. The new bactericidal DHP derivatives targeted the H. pylori regulator HsrA and inhibited its DNA binding activity according to both in vitro and in vivo analyses. Molecular docking predicted a potential druggable binding pocket in HsrA, which could open the door to structure-based design of novel anti-H. pylori drugs.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Brisa Santos
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María F. Fillat
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Milagrosa Montes
- Department of Microbiology, Donostia University Hospital-Biodonostia Health Research Institute, San Sebastian, Spain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Piazuelo
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Aragón Health Sciences Institute (IACS), Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
7
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. In Silico Screening and In Vitro Assessment of Natural Products with Anti-Virulence Activity against Helicobacter pylori. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010020. [PMID: 35011255 PMCID: PMC8746548 DOI: 10.3390/molecules27010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is one of the most frequent human pathogens and a leading etiological agent of various gastric diseases. As stringent response, coordinated by a SpoT protein, seems to be crucial for the survivability of H. pylori, the main goal of this article was to use in silico computational studies to find phytochemical compounds capable of binding to the active site of SpoT from H. pylori and confirm the ability of the most active candidates to interfere with the virulence of this bacterium through in vitro experiments. From 791 natural substances submitted for the virtual screening procedure, 10 were chosen and followed for further in vitro examinations. Among these, dioscin showed the most interesting parameters (the lowest MIC, the highest anti-biofilm activity in static conditions, and a relatively low stimulation of morphological transition into coccoids). Therefore, in the last part, we extended the research with a number of further experiments and observed the ability of dioscin to significantly reduce the formation of H. pylori biofilm under Bioflux-generated flow conditions and its capacity for additive enhancement of the antibacterial activity of all three commonly used antibiotics (clarithromycin, metronidazole, and levofloxacin). Based on these results, we suggest that dioscin may be an interesting candidate for new therapies targeting H. pylori survivability and virulence.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
- Correspondence: (M.S.); (P.K.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
| | - Ryszard Adamski
- Laboratory of Microscopic Techniques, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63, 50-001 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
9
|
Belica-Pacha S, Daśko M, Buko V, Zavodnik I, Miłowska K, Bryszewska M. Thermodynamic Studies of Interactions between Sertraline Hydrochloride and Randomly Methylated β-Cyclodextrin Molecules Supported by Circular Dichroism Spectroscopy and Molecular Docking Results. Int J Mol Sci 2021; 22:12357. [PMID: 34830239 PMCID: PMC8620473 DOI: 10.3390/ijms222212357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022] Open
Abstract
The interaction between sertraline hydrochloride (SRT) and randomly methylated β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pressure. The method used-Isothermal Titration Calorimetry (ITC) enabled to determine values of the thermodynamic functions like the enthalpy (ΔH), the entropy (ΔS) and the Gibbs free energy (ΔG) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n) and binding/association constant (K) value have been calculated from the experimental results. The obtained outcome was compared with the data from the literature for other non-ionic βCD derivatives interacting with SRT and the enthalpy-entropy compensation were observed and interpreted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the computational studies with the use of molecular docking (MD).
Collapse
Affiliation(s)
- Sylwia Belica-Pacha
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Vyacheslav Buko
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biotechnology, School of Medical Sciences, Krakowska 9, 15-875 Bialystok, Poland
| | - Ilya Zavodnik
- Division of Biochemical Pharmacology, Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences, BLK-50, 230030 Grodno, Belarus; (V.B.); (I.Z.)
- Department of Biochemistry, Yanka Kupala Grodno State University, BLK-50, 230030 Grodno, Belarus
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
10
|
Caldara M, Marmiroli N. Antimicrobial Properties of Antidepressants and Antipsychotics-Possibilities and Implications. Pharmaceuticals (Basel) 2021; 14:ph14090915. [PMID: 34577614 PMCID: PMC8470654 DOI: 10.3390/ph14090915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The spreading of antibiotic resistance is responsible annually for over 700,000 deaths worldwide, and the prevision is that this number will increase exponentially. The identification of new antimicrobial treatments is a challenge that requires scientists all over the world to collaborate. Developing new drugs is an extremely long and costly process, but it could be paralleled by drug repositioning. The latter aims at identifying new clinical targets of an “old” drug that has already been tested, approved, and even marketed. This approach is very intriguing as it could reduce costs and speed up approval timelines, since data from preclinical studies and on pharmacokinetics, pharmacodynamics, and toxicity are already available. Antidepressants and antipsychotics have been described to inhibit planktonic and sessile growth of different yeasts and bacteria. The main findings in the field are discussed in this critical review, along with the description of the possible microbial targets of these molecules. Considering their antimicrobial activity, the manuscript highlights important implications that the administration of antidepressants and antipsychotics may have on the gut microbiome.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
- Correspondence:
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
- Italian National Interuniversity Consortium for Environmental Sciences (CINSA), University of Parma, 43124 Parma, Italy
| |
Collapse
|
11
|
Antibiofilm and Antimicrobial-Enhancing Activity of Chelidonium majus and Corydalis cheilanthifolia Extracts against Multidrug-Resistant Helicobacter pylori. Pathogens 2021; 10:pathogens10081033. [PMID: 34451497 PMCID: PMC8400265 DOI: 10.3390/pathogens10081033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 01/15/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about 60% of people worldwide. The search for new drugs with activity against H. pylori is now a hotspot in the effective and safe control of this bacterium. Therefore, the aim of this research was to determine the antibacterial activity of extracts from selected plants of the Papaveraceae family against planktonic and biofilm forms of the multidrug-resistant clinical strain of H. pylori using a broad spectrum of analytical in vitro methods. It was revealed that among the tested extracts, those obtained from Corydalis cheilanthifolia and Chelidonium majus were the most active, with minimal inhibitory concentrations (MICs) of 64 µg/mL and 128 µg/mL, respectively. High concentrations of both extracts showed cytotoxicity against cell lines of human hepatic origin. Therefore, we attempted to lower their MICs through the use of a synergistic combination with synthetic antimicrobials as well as by applying cellulose as a drug carrier. Using checkerboard assays, we determined that both extracts presented synergistic interactions with amoxicillin (AMX) and 3-bromopyruvate (3-BP) (FICI = 0.5) and additive relationships with sertraline (SER) (FICI = 0.75). The antibiofilm activity of extracts and their combinations with AMX, 3-BP, or SER, was analyzed by two methods, i.e., the microcapillary overgrowth under flow conditions (the Bioflux system) and assessment of the viability of lawn biofilms after exposure to drugs released from bacterial cellulose (BC) carriers. Using both methods, we observed a several-fold decrease in the level of H. pylori biofilm, indicating the ability of the tested compounds to eradicate the microbial biofilm. The obtained results indicate that application of plant-derived extracts from the Papaveraceae family combined with synthetic antimicrobials, absorbed into organic BC carrier, may be considered a promising way of fighting biofilm-forming H. pylori.
Collapse
|
12
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Hörner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: a systematic review. Int J Antimicrob Agents 2021; 58:106380. [PMID: 34166776 DOI: 10.1016/j.ijantimicag.2021.106380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 01/19/2023]
Abstract
The global spread of microbial resistance coupled with high costs and slow pace in the discovery of a new antibiotic have made drug repositioning an attractive and promising alternative in the treatment of infections caused by multidrug resistant (MDR) microorganisms. The reuse involves the production of compounds with lower costs and development time, using diversified production technologies. The present systematic review aimed to present a selection of studies published in the last 20 years, which report the antimicrobial activity of non-antibiotic drugs that are candidates for repositioning, which could be used against the current microbial multidrug resistance. A search was performed in the PubMed, SciELO and Google Scholar databases using the following search strategies: [(drug repurposing) OR (drug repositioning) OR (repositioning) AND (non-antibiotic) AND (antibacterial activity) AND (antimicrobial activity)]. Overall, 112 articles were included, which explored the antimicrobial activity in antidepressants, antihypertensives, anti-inflammatories, antineoplastics, hypoglycemic agents, among other drugs. It was concluded that they have significant antimicrobial activity in vitro and in vivo, against standard strain and clinical isolates (Gram-negative and Gram-positive) and fungi. When associated with antibacterials, most of these drugs had their antibacterial activity enhanced. It was also a consensus of the studies included in this review that the presence of aromatic rings in the molecular structure contributes to antimicrobial activity. This review highlights the potential repositioning of several classes of non-antibiotic drugs as promising candidates for repositioning in the treatment of severe bacterial infections of MDR bacteria, extensively resistant (XDR) and pan-resistant (PDR) to drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Taciéli F da Rosa
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Marissa B Serafin
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Angelita Bottega
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil; Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil.
| |
Collapse
|
13
|
Krzyżek P. Toxin-Antitoxin Systems - A New Player in Morphological Transformation of Antibiotic-Exposed Helicobacter pylori? Front Cell Infect Microbiol 2021; 11:670677. [PMID: 33981631 PMCID: PMC8108984 DOI: 10.3389/fcimb.2021.670677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
14
|
Krzyżek P, Migdał P, Paluch E, Karwańska M, Wieliczko A, Gościniak G. Myricetin as an Antivirulence Compound Interfering with a Morphological Transformation into Coccoid Forms and Potentiating Activity of Antibiotics against Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22052695. [PMID: 33800082 PMCID: PMC7962197 DOI: 10.3390/ijms22052695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori, a gastric pathogen associated with a broad range of stomach diseases, has a high tendency to become resistant to antibiotics. One of the most important factors related to therapeutic failures is its ability to change from a spiral to a coccoid form. Therefore, the main aim of our original article was to determine the influence of myricetin, a natural compound with an antivirulence action, on the morphological transformation of H. pylori and check the potential of myricetin to increase the activity of antibiotics against this pathogen. We observed that sub-minimal inhibitory concentrations (sub-MICs) of this compound have the ability to slow down the process of transformation into coccoid forms and reduce biofilm formation of this bacterium. Using checkerboard assays, we noticed that the exposure of H. pylori to sub-MICs of myricetin enabled a 4–16-fold reduction in MICs of all classically used antibiotics (amoxicillin, clarithromycin, tetracycline, metronidazole, and levofloxacin). Additionally, RT-qPCR studies of genes related to the H. pylori morphogenesis showed a decrease in their expression during exposure to myricetin. This inhibitory effect was more strongly seen for genes involved in the muropeptide monomers shortening (csd3, csd6, csd4, and amiA), suggesting their significant participation in the spiral-to-coccoid transition. To our knowledge, this is the first research showing the ability of any compound to synergistically interact with all five antibiotics against H. pylori and the first one showing the capacity of a natural substance to interfere with the morphological transition of H. pylori from spiral to coccoid forms.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
- Correspondence:
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| | - Magdalena Karwańska
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| |
Collapse
|
15
|
Krzyżek P, Gościniak G, Fijałkowski K, Migdał P, Dziadas M, Owczarek A, Czajkowska J, Aniołek O, Junka A. Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm. Int J Mol Sci 2020; 21:E9507. [PMID: 33327555 PMCID: PMC7765062 DOI: 10.3390/ijms21249507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a bacterium known mainly of its ability to cause persistent inflammations of the human stomach, resulting in peptic ulcer diseases and gastric cancers. Continuous exposure of this bacterium to antibiotics has resulted in high detection of multidrug-resistant strains and difficulties in obtaining a therapeutic effect. The purpose of the present study was to determine the usability of bacterial cellulose (BC) chemisorbed with 3-bromopyruvate (3-BP) or sertraline (SER) to act against lawn H. pylori biofilms. The characterization of BC carriers was made using a N2 adsorption/desorption analysis, tensile strength test, and scanning electron microscopy (SEM) observations. Determination of an antimicrobial activity was performed using a modified disk-diffusion method and a self-designed method of testing antibacterial activity against biofilm microbial forms. In addition, bacterial morphology was checked by SEM. It was found that BC disks were characterized by a high cross-linking and shear/stretch resistance. Growth inhibition zones for BC disks chemisorbed with 2 mg of SER or 3-BP were equal to 26.5-27.5 mm and 27-30 mm, respectively. The viability of lawn biofilm H. pylori cells after a 4-h incubation with 2 mg SER or 3-BP chemisorbed on BC disks was ≥4 log lower, suggesting their antibacterial effect. SEM observations showed a number of morphostructural changes in H. pylori cells exposed to these substances. Concluding, SER and 3-BP chemisorbed on BC carriers presented a promising antibacterial activity against biofilm H. pylori cells in in vitro conditions.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Mariusz Dziadas
- Faculty of Chemistry, University of Wroclaw, 50-353 Wroclaw, Poland;
| | - Artur Owczarek
- Department of Drug Form Technology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Joanna Czajkowska
- Laboratory of Microbiology, Polish Center for Technology Development PORT, 54-066 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
16
|
Krzyżek P, Paluch E, Gościniak G. Synergistic Therapies as a Promising Option for the Treatment of Antibiotic-Resistant Helicobacter pylori. Antibiotics (Basel) 2020; 9:antibiotics9100658. [PMID: 33007899 PMCID: PMC7599531 DOI: 10.3390/antibiotics9100658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium responsible for the development of gastric diseases. The issue of spreading antibiotic resistance of H. pylori and its limited therapeutic options is an important topic in modern gastroenterology. This phenomenon is greatly associated with a very narrow range of antibiotics used in standard therapies and, as a consequence, an alarmingly high detection of multidrug-resistant H. pylori strains. For this reason, scientists are increasingly focused on the search for new substances that will not only exhibit antibacterial effect against H. pylori, but also potentiate the activity of antibiotics. The aim of the current review is to present scientific reports showing newly discovered or repurposed compounds with an ability to enhance the antimicrobial activity of classically used antibiotics against H. pylori. To gain a broader context in their future application in therapies of H. pylori infections, their antimicrobial properties, such as minimal inhibitory concentrations and minimal bactericidal concentrations, dose- and time-dependent mode of action, and, if characterized, anti-biofilm and/or in vivo activity are further described. The authors of this review hope that this article will encourage the scientific community to expand research on the important issue of synergistic therapies in the context of combating H. pylori infections.
Collapse
|
17
|
Krzyżek P, Grande R. Transformation of Helicobacter pylori into Coccoid Forms as a Challenge for Research Determining Activity of Antimicrobial Substances. Pathogens 2020; 9:pathogens9030184. [PMID: 32143312 PMCID: PMC7157236 DOI: 10.3390/pathogens9030184] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Morphological variability is one of the phenotypic features related to adaptation of microorganisms to stressful environmental conditions and increased tolerance to antimicrobial substances. Helicobacter pylori, a gastric mucosal pathogen, is characterized by a high heterogeneity and an ability to transform from a spiral to a coccoid form. The presence of the coccoid form is associated with the capacity to avoid immune system detection and to promote therapeutic failures. For this reason, it seems that the investigation for new, alternative methods combating H. pylori should include research of coccoid forms of this pathogen. The current review aimed at collecting information about the activity of antibacterial substances against H. pylori in the context of the morphological variability of this bacterium. The collected data was discussed in terms of the type of substances used, applied research techniques, and interpretation of results. The review was extended by a polemic on the limitations in determining the viability of coccoid H. pylori forms. Finally, recommendations which can help in future research aiming to find new compounds with a potential to eradicate H. pylori have been formulated.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Rossella Grande
- Center for Aging Science and Translational Medicine (CeSI-MeT), Via Luigi Polacchi, 11, 66100 Chieti, Italy;
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|