1
|
Latorre-Fernández J, Aspiroz C, Abdullahi IN, Campaña-Burguet A, Eguizábal P, González-Azcona C, Tenorio C, Zarazaga M, Shittu AO, Lozano C, Torres C. Evaluation of the double-zone hemolysis (DZH) test for the detection of livestock-associated methicillin-resistant Staphylococcus aureus. Microbiol Spectr 2025; 13:e0110224. [PMID: 39656002 PMCID: PMC11705798 DOI: 10.1128/spectrum.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), such as clonal-complex (CC)398, are of clinical relevance due to their multi-drug resistance profiles, adding to the overall burden of MRSA in humans. The objective was to evaluate the double-zone hemolysis (DZH) test as a simple and reliable method for detecting LA-MRSA in the clinical microbiology laboratory. S. aureus isolates assigned to CC398 (n = 183; 152 MRSA/31 methicillin-susceptible S. aureus [MSSA]), CC1 (n = 44; MRSA), and other CCs (n = 144; 94 MRSA/50 MSSA) were investigated. These isolates were screened for DZH on sheep blood agar plates after incubation at 37°C for 24 h. Identification of the scn (human adaptation marker) and hlb genes (encoding hemolysin, intact or truncated) was performed by PCR. The positive and negative predictive values (PPV and NPV), sensitivity (SS), and specificity (SP) of the DZH test were determined. The DZH-positive phenotype was observed in 94.7%, 25%, and 6.4% of MRSA-CC398, MRSA-CC1, and MRSA of other lineages, respectively. Moreover, the DZH-positive phenotype was identified in 9.7% of MSSA-CC398 isolates but not in other MSSA lineages. All 164 DZH-positive isolates carried hlb intact, and 99.4% was scn negative, suggesting an animal origin. Of the 207 DZH-negative isolates, 99.5% was scn positive (indicating human adaptation), and 95.2% possessed a truncated hlb gene. The PPV/NPV/SS/SP values (in %) of the DZH test were as follows: detection of (i) LA-MRSA-CC398: (87.8/96.1/94.7/90.9); (ii) LA-MRSA-CC398/CC1 scn negative: (94.5/100/100/95.8); and (iii) S. aureus scn negative: (99.4/99.5/99.4/99.5). The DZH is a reliable strategy to detect and distinguish LA-MRSA in the clinical microbiology laboratory and is recommended as an adjunct diagnostic test. IMPORTANCE This study evaluated a simple and reliable phenotypic test that can be very useful in the clinical microbiology laboratory to detect livestock-associated (LA) methicillin-resistant Staphylococcus aureus (MRSA) isolates and S. aureus of potential animal origin. The proposed double-zone hemolysis test has shown high positive and negative predictive values, sensitivity, and specificity to detect these LA-MRSA clones and S. aureus of potential animal origin. Most LA-MRSA clones exhibit resistance to different classes of antibiotics, with unique epidemiological characteristics, and their early detection has public health relevance and patient management.
Collapse
Affiliation(s)
- Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Aspiroz
- Laboratory of Clinical Microbiology, Hospital Universitario Royo Villanova, Zaragoza, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Paula Eguizábal
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Tenorio
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
2
|
Abdullahi IN, Lozano C, Zarazaga M, Saidenberg ABS, Stegger M, Torres C. Clonal relatedness of coagulase-positive staphylococci among healthy dogs and dog-owners in Spain. Detection of multidrug-resistant-MSSA-CC398 and novel linezolid-resistant-MRSA-CC5. Front Microbiol 2023; 14:1121564. [PMID: 36937268 PMCID: PMC10017961 DOI: 10.3389/fmicb.2023.1121564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Nasal carriage of coagulase-positive staphylococci (CoPS) in healthy dogs could indicate increased risks of colonization for in-contact people or vice versa. This study determined the nasal carriage rate of CoPS among healthy dogs and in-contact people, their genotypic characteristics and phylogenetic relatedness. Methods Nasal samples were collected from 27 households (34 dogs and 41 humans) in Spain. Staphylococci were identified by MALDI-TOF-MS, their antimicrobial resistance (AMR) genes and spa-types were tested by PCR/sequencing. The relatedness of CoPS from the same households was assessed by core genome single nucleotide polymorphisms (SNPs) analyses. Results Staphylococcus aureus carriage was found in 34.1% of humans (including one methicillin-resistant S. aureus MRSA-CC5-t2220-SCCmec type-IV2B) and 5.9% of dogs; Staphylococcus pseudintermedius in 2.4% of humans and 32.4% of dogs; while Staphylococcus coagulans was only detected in dogs (5.4%). Remarkably, one human co-carried S. aureus/S. pseudintermedius, while a dog co-carried the three CoPS species. Household density was significantly associated with S. pseudintermedius carriage in households with > than 1 dog and >than 1 human (OR = 18.10, 95% CI: 1.24-260.93, p = 0.034). Closely related (<15 SNPs) S. aureus or S. pseudintermedius were found in humans or dogs in three households. About 56.3% S. aureus carriers (dog or human) harboured diverse within-host spa-types or AMR genotypes. Ten clonal complexes (CCs) were detected among the S. aureus, of which methicillin-susceptible S. aureus-CC398-IEC-type C (t1451 and t571) was the most frequent, but exclusive to humans. S. aureus and S. pseudintermedius isolates harboured resistance genes or mutations associated to 9 classes of antimicrobials including linezolid (G2261A & T1584A point mutations in 23S rDNA). The S. coagulans isolates were susceptible to all antimicrobials. Most of the S. pseudintermedius carried lukS/F-I, siet, and sient genes, and all S. aureus were negative for lukS/F-PV, tst-1, eta and etb genes. Discussion Clonally related human-to-human MSSA and dog-to-human MSSP were found. The detection of the MSSA-CC398 clade highlights the need for its continuous surveillance from One Health perspective.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Andre Becker Simoes Saidenberg
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
- *Correspondence: Carmen Torres,
| |
Collapse
|
3
|
Huber C, Wolf SA, Ziebuhr W, Holmes MA, Assmann J, Lübke-Becker A, Thürmer A, Semmler T, Brombach J, Bethe A, Bischoff M, Wieler LH, Epping L, Walther B. How to survive pig farming: Mechanism of SCC mec element deletion and metabolic stress adaptation in livestock-associated MRSA. Front Microbiol 2022; 13:969961. [PMID: 36504815 PMCID: PMC9728531 DOI: 10.3389/fmicb.2022.969961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.
Collapse
Affiliation(s)
- Charlotte Huber
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julia Assmann
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Julian Brombach
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Lothar H. Wieler
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany,*Correspondence: Birgit Walther,
| |
Collapse
|
4
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|