1
|
Kreutzmann H, Stadler J, Knecht C, Sassu EL, Ruczizka U, Zablotski Y, Vatzia E, Balka G, Zaruba M, Chen HW, Riedel C, Rümenapf T, Ladinig A. Phenotypic Characterization of a Virulent PRRSV-1 Isolate in a Reproductive Model With and Without Prior Heterologous Modified Live PRRSV-1 Vaccination. Front Vet Sci 2022; 9:820233. [PMID: 35464363 PMCID: PMC9022457 DOI: 10.3389/fvets.2022.820233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Reproductive disorders induced by porcine reproductive and respiratory syndrome virus (PRRSV) cause high economic losses in the pig industry worldwide. In this study, we aimed to phenotypically characterize a virulent PRRSV-1 subtype 1 isolate (AUT15-33) in a reproductive model. Furthermore, the protective effect of a heterologous modified live virus vaccine (ReproCyc® PRRS EU) was evaluated. In addition, PRRSV AUT15-33 was genotypically compared to other well-characterized isolates. Sixteen gilts were equally divided into four groups: a vaccinated and infected group (V–I), a vaccinated and non-infected group (V–NI), a non-vaccinated and infected group (NV–I), and a non-vaccinated and non-infected (NV–NI) group. After PRRSV infection on gestation day 84, all gilts were clinically examined on a daily basis, and blood samples were taken at five timepoints. Necropsy was performed 3 weeks after infection. The fetal preservation status was assessed, and PRRSV RNA concentrations were measured in the blood and tissue samples from all gilts and fetuses. After infection, all four gilts in the NV–I group were viremic throughout 17 days post-infection (dpi), whereas two gilts in the V–I group were viremic at only one timepoint at 6 dpi. The viral load was significantly higher in gilt serum, tracheobronchial lymph nodes, uterine lymph nodes, maternal endometrium, and fetal placenta of NV–I gilts compared to the V–I ones (p < 0.05). Moreover, the preservation status of the fetuses derived from NV–I gilts was significantly impaired (55.9% of viable fetuses) compared to the other groups (p < 0.001). Upon comparison with other known isolates, the phylogenetic analyses revealed the closest relation to a well-characterized PRRSV-1 subtype 1 field isolate from Belgium. In conclusion, the high virulence of AUT15-33 was phenotypically confirmed in an experimental reproductive model. The vaccination of the gilts showed promising results in reducing viremia, fetal damage, and transplacental transmission of the PRRSV-1 strain characterized in this study.
Collapse
Affiliation(s)
- Heinrich Kreutzmann
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Heinrich Kreutzmann
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena L. Sassu
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Ruczizka
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yury Zablotski
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Eleni Vatzia
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Marianne Zaruba
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hann-Wei Chen
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Riedel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Kvisgaard LK, Larsen LE, Kristensen CS, Paboeuf F, Renson P, Bourry O. Challenge of Naïve and Vaccinated Pigs with a Vaccine-Derived Recombinant Porcine Reproductive and Respiratory Syndrome Virus 1 Strain (Horsens Strain). Vaccines (Basel) 2021; 9:vaccines9050417. [PMID: 33921958 PMCID: PMC8143564 DOI: 10.3390/vaccines9050417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
In July 2019, a vaccine-derived recombinant Porcine reproductive and respiratory syndrome virus 1 strain (PRRSV-1) (Horsens strain) infected more than 40 Danish sow herds, resulting in severe losses. In the present study, the pathogenicity of the recombinant Horsens strain was assessed and compared to a reference PRRSV-1 strain using a well-characterized experimental model in young SPF pigs. Furthermore, the efficacies of three different PRRSV-1 MLV vaccines to protect pigs against challenge with the recombinant strain were assessed. Following challenge, the unvaccinated pigs challenged with the Horsens strain had significant increased viral load in serum compared to all other groups. No macroscopic changes were observed at necropsy, but tissue from the lungs and tonsils from almost all pigs were PRRSV-positive. The viral load in serum was lower in all vaccinated groups compared to the unvaccinated group challenged with the Horsens strain, and only small differences were seen among the vaccinated groups. The findings in the present study, combined with two other recent reports, indicate that this recombinant “Horsens” strain indeed is capable of inducing infection in growing pigs as well as in pregnant sows that is comparable to or even exceeding those induced by typical PRRSV-1, subtype 1 strains. However, absence of notable clinical signs and lack of significant macroscopic changes indicate that this strain is less virulent than previously characterized highly virulent PRRSV-1 strains.
Collapse
Affiliation(s)
- Lise K. Kvisgaard
- Institute for Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg C, Denmark;
- Correspondence: author:
| | - Lars E. Larsen
- Institute for Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| | | | - Frédéric Paboeuf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| | - Patricia Renson
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| | - Olivier Bourry
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (Anses), 22440 Ploufragan, France; (F.P.); (P.R.); (O.B.)
| |
Collapse
|