1
|
Terasaki A, Ahmed F, Okuno A, Peng Z, Cao DY, Saito S. Neutrophils Expressing Programmed Death-Ligand 1 Play an Indispensable Role in Effective Bacterial Elimination and Resolving Inflammation in Methicillin-Resistant Staphylococcus aureus Infection. Pathogens 2024; 13:401. [PMID: 38787253 PMCID: PMC11124513 DOI: 10.3390/pathogens13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1+ neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant Staphylococcus aureus (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution. The frequency of PD-L1+ neutrophils was dramatically increased in MRSA-infected mice, and this population exhibited enhanced activity in bacterial elimination compared to PD-L1- neutrophils. The administration of PD-L1 monoclonal antibody did not impair PD-L1+ neutrophil function, suggesting that PD-L1 expression itself does not influence neutrophil activity. However, PD-1/PD-L1 blockade significantly delayed liver inflammation resolution in MRSA-infected mice, as indicated by their increased plasma alanine transaminase (ALT) levels and frequencies of inflammatory leukocytes in the liver, implying that neutrophil PD-L1 suppresses the inflammatory response of these cells during the acute phase of MRSA infection. Our results reveal that elevated PD-L1 expression can be a marker for the enhanced anti-bacterial function of neutrophils. Moreover, PD-L1+ neutrophils are an indispensable population attenuating inflammatory leukocyte activities, assisting in a smooth transition into the resolution phase in MRSA infection.
Collapse
Affiliation(s)
- Azusa Terasaki
- Department of Breast-Thyroid-Endocrine Surgery, University of Tsukuba, Ibaraki 3058577, Japan;
| | - Faizan Ahmed
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Alato Okuno
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori 0368530, Japan;
| | - Zhenzi Peng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China;
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Suguru Saito
- Division of Virology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi 3290431, Japan
| |
Collapse
|
2
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
3
|
Oliphant K, Cruz Ayala W, Ilyumzhinova R, Mbayiwa K, Sroka A, Xie B, Andrews B, Keenan K, Claud EC. Microbiome function and neurodevelopment in Black infants: vitamin B 12 emerges as a key factor. Gut Microbes 2024; 16:2298697. [PMID: 38303501 PMCID: PMC10841033 DOI: 10.1080/19490976.2023.2298697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The early life gut microbiome affects the developing brain, and therefore may serve as a target to support neurodevelopment of children living in stressful and under-resourced environments, such as Black youth living on the South Side of Chicago, for whom we observe racial disparities in health. Microbiome compositions/functions key to multiple neurodevelopmental facets have not been studied in Black children, a vulnerable population due to racial disparities in health; thus, a subsample of Black infants living in urban, low-income neighborhoods whose mothers participated in a prenatal nutrition study were recruited for testing associations between composition and function of the gut microbiome (16S rRNA gene sequencing, shotgun metagenomics, and targeted metabolomics of fecal samples) and neurodevelopment (developmental testing, maternal report of temperament, and observed stress regulation). Two microbiome community types, defined by high Lachnospiraceae or Enterobacteriaceae abundance, were discovered in this cohort from 16S rRNA gene sequencing analysis; the Enterobacteriaceae-dominant community type was significantly negatively associated with cognition and language scores, specifically in male children. Vitamin B12 biosynthesis emerged as a key microbiome function from shotgun metagenomics sequencing analysis, showing positive associations with all measured developmental skills (i.e., cognition, language, motor, surgency, effortful control, and observed stress regulation). Blautia spp. also were identified as substantial contributors of important microbiome functions, including vitamin B12 biosynthesis and related vitamin B12-dependent microbiome functions, anti-inflammatory microbial surface antigens, competitive mechanisms against pathobionts, and production of antioxidants. The results are promising with respect to the potential for exploring therapeutic candidates, such as vitamin B12 nutritional or Blautia spp. probiotic supplementation, to support the neurodevelopment of infants at risk for experiencing racial disparities in health.
Collapse
Affiliation(s)
| | | | - Rimma Ilyumzhinova
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Kimberley Mbayiwa
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Anna Sroka
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, USA
| | - Bree Andrews
- Department of Pediatrics, University of Chicago, Chicago, USA
| | - Kate Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Erika C. Claud
- Department of Pediatrics, University of Chicago, Chicago, USA
- Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
4
|
Hatami S, Yavarmanesh M, Sankian M. Comparison of the effects of probiotic strains (Lactobacillus gasseri, Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Limosilactobacillus fermentum) isolated from human and food products on the immune response of CT26 tumor-bearing mice. Braz J Microbiol 2023; 54:2047-2062. [PMID: 37430135 PMCID: PMC10485204 DOI: 10.1007/s42770-023-01060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
This study aimed to compare the effects of the probiotic bacteria, L. gasseri (52b), L. plantarum (M11), L. acidophilus (AC2), and L. fermentum (19SH), isolated from human source and traditional food products on the modulation of the immune system and inflammatory response on BALB/c mouse model bearing CT26 tumor. Five groups of female inbred BALB/c mice were orally administered with the probiotics and their mixes (MIX, at a 1:1 ratio) at varying dosages (1.5 × 108 cfu/ml and 1.2 × 109 cfu/ml) before and after the injection of a subcutaneous CT26 tumor over the course of 38 days via gavage. Finally, their effects on the tumor apoptosis and the cytokine levels in spleen cell cultures were analyzed and compared. M11, MIX, and 52b groups had the greatest levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) production. The highest production level of granzyme B (GrB) was related to the MIX and 52b groups. Moreover, these groups showed the lowest production level of (IL-4) and transforming growth factor beta (TGF-β). Furthermore, the groups of MIX and 52b demonstrated the greatest amount of lymphocyte proliferation of spleen cells in response to the tumor antigen. The delayed-type hypersensitivity (DTH) response significantly increased in the groups of MIX and 52b compared with the control (p < 0.05). The findings demonstrated that the oral treatment of the human strain (52b) and the combination of these bacteria generated strong T helper type 1 (Th1) immune responses in the tumor tissue of the tumor-bearing mice, which led to the suppression of the tumor development.
Collapse
Affiliation(s)
- Samaneh Hatami
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Yavarmanesh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Yang R, Liu T, Pang C, Cai Y, Lin Z, Guo L, Wei X. The Regulatory Effect of Coaggregation Between Fusobacterium nucleatum and Streptococcus gordonii on the Synergistic Virulence to Human Gingival Epithelial Cells. Front Cell Infect Microbiol 2022; 12:879423. [PMID: 35573793 PMCID: PMC9100429 DOI: 10.3389/fcimb.2022.879423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
In subgingival plaque biofilms, Fusobacterium nucleatum is closely related to the occurrence and development of periodontitis. Streptococcus gordonii, as an accessory pathogen, can coaggregate with periodontal pathogens, facilitating the subgingival colonization of periodontal pathogens. Studies have shown that F. nucleatum can coaggregate with S. gordonii and colonize the subgingival plaque. However, most studies have focused on monocultures or coinfection of species and the potential impact of coaggregation between the two species on periodontal interactions to human gingival epithelial cells (hGECs) remains poorly understood. The present study explored the effect of coaggregation between F. nucleatum and S. gordonii on subgingival synergistic virulence to hGECs. The results showed that coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs compared with that in the F. nucleatum monoculture and coinfection group. Coaggregation and coinfection with F. nucleatum both enhanced S. gordonii adhesion to hGECs, but neither of the two groups affected S. gordonii invasion to hGECs compared with S. gordonii monoculture. The gene expression levels of TLR2 and TLR4 in hGECs in the coaggregation group were higher than those in the monoculture groups but lower than those in the coinfection group. Compared with coinfection, the coaggregation inhibited apoptosis of hGECs and promoted the secretion of the proinflammatory cytokines TNF-α and IL-6 by hGECs, showed a synergistic inflammatory effect, while coaggregation inhibited the secretion of the anti-inflammatory cytokine TGF-β1. Coaggregation enhanced the phosphorylation of p65, p38, and JNK proteins and therefore activated the NF-κB and MAPK signaling pathways. Pretreatment with a pathway antagonist/inhibitor decreased the phosphorylation levels of proteins and the secretion of TNF-α and IL-6. In conclusion, coaggregation inhibited the adhesion and invasion of F. nucleatum to hGECs. However, it enhanced the adhesion of S. gordonii to hGECs. Compared with coinfection, coaggregation inhibited the apoptosis of hGECs. The coaggregation coordinately promoted the secretion of TNF-α and IL-6 by hGECs through the TLR/NF-κB and TLR/MAPK signaling pathways while inhibiting the secretion of TGF-β1, thus aggravating the inflammatory response of hGECs.
Collapse
Affiliation(s)
- Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chunfeng Pang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Saito S, Cao DY, Victor AR, Peng Z, Wu HY, Okwan-Duodu D. RASAL3 Is a Putative RasGAP Modulating Inflammatory Response by Neutrophils. Front Immunol 2021; 12:744300. [PMID: 34777356 PMCID: PMC8579101 DOI: 10.3389/fimmu.2021.744300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
As first responder cells in host defense, neutrophils must be carefully regulated to prevent collateral tissue injury. However, the intracellular events that titrate the neutrophil’s response to inflammatory stimuli remain poorly understood. As a molecular switch, Ras activity is tightly regulated by Ras GTPase activating proteins (RasGAP) to maintain cellular active-inactive states. Here, we show that RASAL3, a RasGAP, is highly expressed in neutrophils and that its expression is upregulated by exogenous stimuli in neutrophils. RASAL3 deficiency triggers augmented neutrophil responses and enhanced immune activation in acute inflammatory conditions. Consequently, mice lacking RASAL3 (RASAL3-KO) demonstrate accelerated mortality in a septic shock model via induction of severe organ damage and hyperinflammatory response. The excessive neutrophilic hyperinflammation and increased mortality were recapitulated in a mouse model of sickle cell disease, which we found to have low neutrophil RASAL3 expression upon LPS activation. Thus, RASAL3 functions as a RasGAP that negatively regulates the cellular activity of neutrophils to modulate the inflammatory response. These results demonstrate that RASAL3 could serve as a therapeutic target to regulate excessive inflammation in sepsis and many inflammatory disease states.
Collapse
Affiliation(s)
- Suguru Saito
- Bio-fluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Division of Virology, Department of Immunology and Infection, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aaron R Victor
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhenzi Peng
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Hui-Ya Wu
- College of Health Science, Trans World University, Douliu, Taiwan
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Champagne-Jorgensen K, Mian MF, McVey Neufeld KA, Stanisz AM, Bienenstock J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci Rep 2021; 11:13756. [PMID: 34215822 PMCID: PMC8253831 DOI: 10.1038/s41598-021-93311-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria have diverse and complex influence on their host. Evidence is accumulating that this may be mediated in part by bacterial extracellular membrane vesicles (MV), nanometer-sized particles important for intercellular communication. Little is known about the composition of MV from gram-positive beneficial bacteria nor how they interact with intestinal epithelial cells (IEC). Here we demonstrate that MV from Lacticaseibacillus rhamnosus JB-1 are endocytosed in a likely clathrin-dependent manner by both mouse and human IEC in vitro and by mouse IEC in vivo. We further show that JB-1 MV contain lipoteichoic acid (LTA) that activates Toll-like receptor 2 (TLR2) and induces immunoregulatory interleukin-10 expression by dendritic cells in an internalization-dependent manner. By contrast, neither LTA nor TLR2 appear to be required for JB-1 MV endocytosis by IEC. These results demonstrate a novel mechanism by which bacterial MV can influence host physiology and suggest one potential route for beneficial influence of certain bacteria and probiotics.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada. .,Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare Hamilton, Juravinski Tower Room T3330, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada.
| | - M Firoz Mian
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Karen-Anne McVey Neufeld
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|