1
|
Smith EP, Valdivia RH. Chlamydia trachomatis: a model for intracellular bacterial parasitism. J Bacteriol 2025; 207:e0036124. [PMID: 39976429 PMCID: PMC11925236 DOI: 10.1128/jb.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chlamydia comprises a diverse group of obligate intracellular bacteria that cause infections in animals, including humans. These organisms share fascinating biology, including distinct developmental stages, non-canonical cell surface structures, and adaptations to intracellular parasitism. Chlamydia trachomatis is of particular interest due to its significant clinical importance, causing both ocular and sexually transmitted infections. The strain L2/434/Bu, responsible for lymphogranuloma venereum, is the most common strain used to study chlamydial molecular and cell biology because it grows readily in cell culture and is amenable to genetic manipulation. Indeed, this strain has enabled researchers to tackle fundamental questions about the molecular mechanisms underlying Chlamydia's developmental transitions and biphasic lifecycle and cellular adaptations to obligate intracellular parasitism, including characterizing numerous conserved virulence genes and defining immune responses. However, L2/434/Bu is not representative of C. trachomatis strains that cause urogenital infections in humans, limiting its utility in addressing questions of host tropism and immune evasion in reproductive organs. Recent research efforts are shifting toward understanding the unique attributes of more clinically relevant C. trachomatis genovars.
Collapse
Affiliation(s)
- Erin P Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Host-Microbe Interactions, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Salgado-Morales R, Barba-Xochipa K, Martínez-Ocampo F, Dantán-González E, Hernández-Mendoza A, Quiterio-Trenado M, Rodríguez-Santiago M, Rivera-Ramírez A. Pangenome-Wide Association Study in the Chlamydiaceae Family Reveals Key Evolutionary Aspects of Their Relationship with Their Hosts. Int J Mol Sci 2024; 25:12671. [PMID: 39684382 DOI: 10.3390/ijms252312671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria known for their unique biphasic developmental cycle. Chlamydial are associated with various host organisms, including humans, and have been proposed as emerging pathogens. Genomic studies have significantly enhanced our understanding of chlamydial biology, host adaptation, and evolutionary processes. In this study, we conducted a complete pangenome association analysis (pan-GWAS) using 101 genomes from the Chlamydiaceae family to identify differentially represented genes in Chlamydia and Chlamydophila, revealing their distinct evolutionary strategies for interacting with eukaryotic hosts. Our analysis identified 289 genes with differential abundance between the two clades: 129 showed a strong association with Chlamydia and 160 with Chlamydophila. Most genes in Chlamydia were related to the type III secretion system, while Chlamydophila genes corresponded to various functional categories, including translation, replication, transport, and metabolism. These findings suggest that Chlamydia has developed a high dependence on mammalian cells for replication, facilitated by a complex T3SS for intracellular manipulation. In contrast, the metabolic and functional diversity in Chlamydophila allows it to colonize a broad range of hosts, such as birds, reptiles, amphibians, and mammals, making it a less specialized clade.
Collapse
Affiliation(s)
- Rosalba Salgado-Morales
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Karla Barba-Xochipa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Fernando Martínez-Ocampo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
- Programa de Estancias Posdoctorales por México 2022(3), Modalidad Académica-Inicial, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez CP 03940, Mexico
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| | - Manuel Quiterio-Trenado
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca CP 62100, Mexico
| | - Magdalena Rodríguez-Santiago
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Universidad 1, Tlaxcala de Xicohténcatl CP 90000, Mexico
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62210, Mexico
| |
Collapse
|
3
|
Phillips S, Madden D, Gillett A, Quigley BL, Jelocnik M, Bommana S, O’Meally D, Timms P, Polkinghorne A. Koala ocular disease grades are defined by chlamydial load changes and increases in Th2 immune responses. Front Cell Infect Microbiol 2024; 14:1447119. [PMID: 39600869 PMCID: PMC11588732 DOI: 10.3389/fcimb.2024.1447119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction This study employs bulk RNA sequencing, PCR, and ELISA assays to analyze the pathological factors affecting the outcomes of C. pecorum ocular infections in koalas. It investigates the immune responses and gene expression profiles associated with various stages of koala ocular chlamydiosis. Methods A cohort of 114 koalas from Queensland, Australia were assessed, with 47% displaying clinical signs of ocular disease. Animals were classified into three cohorts: acute active disease (G1), chronic active disease (G2), and chronic inactive disease (G3), along with subclinical Chlamydia pecorum positive (H2) and healthy (H1) cohorts. Results Analysis of clinical, microbiological, humoral immune and cellular immune biomarkers revealed varying chlamydial loads and anti-chlamydial IgG levels across disease grades, with a negative correlation observed between ocular chlamydial load and anti-chlamydial IgG. Koala ocular mucosa gene expression analysis from 27 koalas identified shared expression pathways across disease cohorts, with a significant upregulation of IFNγ expression and tryptophan metabolism in all disease stages. Discussion These findings help elucidate immune response dynamics and molecular pathways underlying koala ocular chlamydiosis, providing insights crucial for disease management strategies.
Collapse
Affiliation(s)
- Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Danielle Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, Australia
| | - Bonnie L. Quigley
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Sankhya Bommana
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Denis O’Meally
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Peter Timms
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
4
|
Junker S, Singh V, Al-Saadi AGM, Wood NA, Hamilton-Brehm SD, Ouellette SP, Fisher DJ. Distinct impacts of each anti-anti-sigma factor ortholog of the chlamydial Rsb partner switching mechanism on development in Chlamydia trachomatis. Microbiol Spectr 2024; 12:e0184624. [PMID: 39470281 PMCID: PMC11619594 DOI: 10.1128/spectrum.01846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Partner switching mechanisms (PSMs) are signal transduction systems comprised of a sensor phosphatase (RsbU), an anti-sigma factor (RsbW, kinase), an anti-anti-sigma factor (RsbV, the RsbW substrate), and a target sigma factor. Chlamydia spp. are obligate intracellular bacterial pathogens of animals that undergo a developmental cycle transitioning between the infectious elementary body (EB) and replicative reticulate body (RB) within a host cell-derived vacuole (inclusion). Secondary differentiation events (RB to EB) are transcriptionally regulated, in part, by the housekeeping sigma factor (σ66) and two late-gene sigma factors (σ54 and σ28). Prior research supports that the PSM in Chlamydia trachomatis regulates availability of σ66. Pan-genome analysis revealed that PSM components are conserved across the phylum Chlamydiota, with Chlamydia spp. possessing an atypical arrangement of two anti-anti-sigma factors, RsbV1 and RsbV2. Bioinformatic analyses support RsbV2 as the homolog to the pan-genome-conserved RsbV with RsbV1 as an outlier. This, combined with in vitro data, indicates that RsbV1 and RsbV2 are structurally and biochemically distinct. Reduced levels or overexpression of RsbV1/RsbV2 did not significantly impact C. trachomatis growth or development. In contrast, overexpression of a non-phosphorylatable RsbV2 S55A mutant, but not overexpression of an RsbV1 S56A mutant, resulted in a 3 log reduction in infectious EB production without reduction in genomic DNA (total bacteria) or inclusion size, suggesting a block in secondary differentiation. The block was corroborated by reduced production of σ54/28-regulated late proteins and via transmission electron microscopy.IMPORTANCEChlamydia trachomatis is the leading cause of reportable bacterial sexually transmitted infections (STIs) and causes the eye infection trachoma, a neglected tropical disease. Broad-spectrum antibiotics used for treatment can lead to microbiome dysbiosis and increased antibiotic resistance development in other bacteria, and treatment failure for chlamydial STIs is a recognized clinical problem. Here, we show that disruption of a partner switching mechanism (PSM) significantly reduces infectious progeny production via blockage of reticulate body to elementary body differentiation. We also reveal a novel PSM expansion largely restricted to the species infecting animals, suggesting a role in pathogen evolution. Collectively, our results highlight the chlamydial PSM as a key regulator of development that could be a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shiomi Junker
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aamal G. M. Al-Saadi
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Nicholas A. Wood
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scott D. Hamilton-Brehm
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Derek J. Fisher
- Molecular Biology, Microbiology and Biochemistry Graduate Program, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
5
|
Lamkiewicz K, Barf LM, Sachse K, Hölzer M. RIBAP: a comprehensive bacterial core genome annotation pipeline for pangenome calculation beyond the species level. Genome Biol 2024; 25:170. [PMID: 38951884 PMCID: PMC11218241 DOI: 10.1186/s13059-024-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Microbial pangenome analysis identifies present or absent genes in prokaryotic genomes. However, current tools are limited when analyzing species with higher sequence diversity or higher taxonomic orders such as genera or families. The Roary ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, and Enterococcus genomes, outperforming other established and recent pangenome tools for identifying all-encompassing core genes at the genus level. RIBAP is a freely available Nextflow pipeline at github.com/hoelzer-lab/ribap and zenodo.org/doi/10.5281/zenodo.10890871.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, Jena, 07743, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, 13353, Germany.
| |
Collapse
|
6
|
Collingro A, Köstlbacher S, Siegl A, Toenshoff ER, Schulz F, Mitchell SO, Weinmaier T, Rattei T, Colquhoun DJ, Horn M. The Fish Pathogen "Candidatus Clavichlamydia salmonicola"-A Missing Link in the Evolution of Chlamydial Pathogens of Humans. Genome Biol Evol 2023; 15:evad147. [PMID: 37615694 PMCID: PMC10448858 DOI: 10.1093/gbe/evad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/25/2023] Open
Abstract
Chlamydiae like Chlamydia trachomatis and Chlamydia psittaci are well-known human and animal pathogens. Yet, the chlamydiae are a much larger group of evolutionary ancient obligate intracellular bacteria that includes predominantly symbionts of protists and diverse animals. This makes them ideal model organisms to study evolutionary transitions from symbionts in microbial eukaryotes to pathogens of humans. To this end, comparative genome analysis has served as an important tool. Genome sequence data for many chlamydial lineages are, however, still lacking, hampering our understanding of their evolutionary history. Here, we determined the first high-quality draft genome sequence of the fish pathogen "Candidatus Clavichlamydia salmonicola", representing a separate genus within the human and animal pathogenic Chlamydiaceae. The "Ca. Clavichlamydia salmonicola" genome harbors genes that so far have been exclusively found in Chlamydia species suggesting that basic mechanisms important for the interaction with chordate hosts have evolved stepwise in the history of chlamydiae. Thus, the genome sequence of "Ca. Clavichlamydia salmonicola" allows to constrain candidate genes to further understand the evolution of chlamydial virulence mechanisms required to infect mammals.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Alexander Siegl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena R Toenshoff
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zürich, Switzerland
| | - Frederik Schulz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- DOE Joint Genome Institute, Berkeley, California, USA
| | | | - Thomas Weinmaier
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Kasimov V, White RT, Foxwell J, Jenkins C, Gedye K, Pannekoek Y, Jelocnik M. Whole-genome sequencing of Chlamydia psittaci from Australasian avian hosts: A genomics approach to a pathogen that still ruffles feathers. Microb Genom 2023; 9:mgen001072. [PMID: 37486739 PMCID: PMC10438822 DOI: 10.1099/mgen.0.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Chlamydia psittaci is a globally distributed veterinary pathogen with zoonotic potential. Although C. psittaci infections have been reported in various hosts, isolation and culture of Chlamydia is challenging, hampering efforts to produce contemporary global C. psittaci genomes. This is particularly evident in the lack of avian C. psittaci genomes from Australia and New Zealand. In this study, we used culture-independent probe-based whole-genome sequencing to expand the global C. psittaci genome catalogue. Here, we provide new C. psittaci genomes from two pigeons, six psittacines, and novel hosts such as the Australian bustard (Ardeotis australis) and sooty shearwater (Ardenna grisea) from Australia and New Zealand. We also evaluated C. psittaci genetic diversity using multilocus sequence typing (MLST) and major outer membrane protein (ompA) genotyping on additional C. psittaci-positive samples from various captive avian hosts and field isolates from Australasia. We showed that the first C. psittaci genomes sequenced from New Zealand parrots and pigeons belong to the clonal sequence type (ST)24 and diverse 'pigeon-type' ST27 clade, respectively. Australian parrot-derived strains also clustered in the ST24 group, whereas the novel ST332 strain from the Australian bustard clustered in a genetically diverse clade of strains from a fulmar, parrot, and livestock. MLST and ompA genotyping revealed ST24/ompA genotype A in wild and captive parrots and a sooty shearwater, whilst 'pigeon-types' (ST27/35 and ompA genotypes B/E) were found in pigeons and other atypical hosts, such as captive parrots, a little blue penguin/Kororā (Eudyptula minor) and a zebra finch (Taeniopygia guttata castanotis) from Australia and New Zealand. This study provides new insights into the global phylogenomic diversity of C. psittaci and further demonstrates the multi-host generalist capacity of this pathogen.
Collapse
Affiliation(s)
- Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| | - Rhys T. White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia
- The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Kristene Gedye
- Massey University, School of Veterinary Science, Palmerston North 4442, New Zealand
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, Netherlands
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| |
Collapse
|
8
|
Zaręba-Marchewka K, Bomba A, Scharf S, Niemczuk K, Schnee C, Szymańska-Czerwińska M. Whole Genome Sequencing and Comparative Genomic Analysis of Chlamydia gallinacea Field Strains Isolated from Poultry in Poland. Pathogens 2023; 12:891. [PMID: 37513738 PMCID: PMC10384503 DOI: 10.3390/pathogens12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chlamydia gallinacea is an intracellular bacterium belonging to the Chlamydiaceae family. Poultry is considered to be the major reservoir of this agent, which has worldwide distribution and a particularly consistent worldwide occurrence in chicken flocks. The bacterium has been linked to respiratory disease in humans but without definitive confirmation; nevertheless, while it has not been proved to be the cause of human respiratory disease, a recent report from Italy verified its bird-to-human transmission. This aspect being significant for public health, more research is needed to gain insight into the infection biology of C. gallinacea. In this study, the genomes of eleven novel C. gallinacea field strains from different regions of Poland were analyzed comparatively. It was confirmed that C. gallinacea strains are closely related, with at least 99.46% sequence identity. They possess a conservative genome structure involving the plasticity zone with a complete cytotoxin, the type three secretion system, inclusion membrane proteins, polymorphic membrane proteins, hctA and hctB histone-like proteins, and the chlamydial protease-like activating factor exoenzyme, as well as plasmids. Genetic diversity seems to be restricted. However, some genetic loci, such as ompA and multi-locus sequence typing target genes, are diverse enough to enable high-resolution genotyping and epidemiological tracing.
Collapse
Affiliation(s)
- Kinga Zaręba-Marchewka
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Sabine Scharf
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Krzysztof Niemczuk
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96 a, D-07743 Jena, Germany
| | - Monika Szymańska-Czerwińska
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
- Laboratory of Serological Diagnosis, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland
| |
Collapse
|
9
|
Sachse K, Hölzer M, Vorimore F, Barf LM, Sachse C, Laroucau K, Marz M, Lamkiewicz K. Genomic analysis of 61 Chlamydia psittaci strains reveals extensive divergence associated with host preference. BMC Genomics 2023; 24:288. [PMID: 37248517 PMCID: PMC10226258 DOI: 10.1186/s12864-023-09370-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Chlamydia (C.) psittaci, the causative agent of avian chlamydiosis and human psittacosis, is a genetically heterogeneous species. Its broad host range includes parrots and many other birds, but occasionally also humans (via zoonotic transmission), ruminants, horses, swine and rodents. To assess whether there are genetic markers associated with host tropism we comparatively analyzed whole-genome sequences of 61 C. psittaci strains, 47 of which carrying a 7.6-kbp plasmid. RESULTS Following clean-up, reassembly and polishing of poorly assembled genomes from public databases, phylogenetic analyses using C. psittaci whole-genome sequence alignment revealed four major clades within this species. Clade 1 represents the most recent lineage comprising 40/61 strains and contains 9/10 of the psittacine strains, including type strain 6BC, and 10/13 of human isolates. Strains from different non-psittacine hosts clustered in Clades 2- 4. We found that clade membership correlates with typing schemes based on SNP types, ompA genotypes, multilocus sequence types as well as plasticity zone (PZ) structure and host preference. Genome analysis also revealed that i) sequence variation in the major outer membrane porin MOMP can result in 3D structural changes of immunogenic domains, ii) past host change of Clade 3 and 4 strains could be associated with loss of MAC/perforin in the PZ, rather than the large cytotoxin, iii) the distinct phylogeny of atypical strains (Clades 3 and 4) is also reflected in their repertoire of inclusion proteins (Inc family) and polymorphic membrane proteins (Pmps). CONCLUSIONS Our study identified a number of genomic features that can be correlated with the phylogeny and host preference of C. psittaci strains. Our data show that intra-species genomic divergence is associated with past host change and includes deletions in the plasticity zone, structural variations in immunogenic domains and distinct repertoires of virulence factors.
Collapse
Affiliation(s)
- Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Martin Hölzer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Fabien Vorimore
- Laboratory for Animal Health, Identypath, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre 3 / Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute for Biological Information Processing 6 / Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Karine Laroucau
- Laboratory for Animal Health, Bacterial Zoonosis Unit, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
10
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
11
|
van der Wal FJ, Achterberg RP, van der Goot JA, Dinkla A, Bossers-de Vries R, van Solt-Smits C, Bossers A, Heijne M. Proof of concept for multiplex detection of antibodies against Chlamydia species in chicken serum using a bead-based suspension array with peptides as antigens. Vet Res 2023; 54:31. [PMID: 37016427 PMCID: PMC10074890 DOI: 10.1186/s13567-023-01159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 04/06/2023] Open
Abstract
The available differentiating tests for Chlamydia are based on detection of genetic material and only give information about the actual infection status, but reveal nothing of past infections. As the use of serological methods increases the window of detection, the goal of this study was to investigate if it is possible to develop a differentiating serological test for antibodies against Chlamydia species in chicken sera. Focus was on C. psittaci, C. gallinacea, and two closely related species, i.e. C. abortus and C. avium. To enable differentiating serology, a bead-based Luminex suspension array was constructed, using peptides as antigens, derived from known immunoreactive Chlamydia proteins. For the majority of these peptides, species-specific seroreactivity in mammalian sera has been reported in literature. The suspension array correctly identified antibodies against various Chlamydia species in sera from experimentally infected mice, and was also able to differentiate between antibodies against C. psittaci and C. gallinacea in sera from experimentally infected chickens. In field sera, signals were difficult to interpret as insufficient sera from experimentally infected chickens were available for evaluating the seroreactivity of all peptides. Nevertheless, results of the suspension array with field sera are supported by published data on the occurrence of C. gallinacea in Dutch layers, thereby demonstrating the proof of concept of multiplex serology for Chlamydial species in poultry.
Collapse
Affiliation(s)
- Fimme J van der Wal
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, Netherlands.
| | - René P Achterberg
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, Netherlands
| | | | - Annemieke Dinkla
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, Netherlands
| | | | | | - Alex Bossers
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, Netherlands
| | - Marloes Heijne
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, Netherlands
| |
Collapse
|
12
|
White RT, Jelocnik M, Klukowski N, Haque MH, Sarker S. The first genomic insight into Chlamydia psittaci sequence type (ST)24 from a healthy captive psittacine host in Australia demonstrates evolutionary proximity with strains from psittacine, human, and equine hosts. Vet Microbiol 2023; 280:109704. [PMID: 36840991 DOI: 10.1016/j.vetmic.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Chlamydia psittaci is a zoonotic pathogen that infects birds, humans, and other mammals. Notably, recent studies suggested the human-to-human transmission of C. psittaci, and this pathogen also causes equine reproductive loss in Australia. Molecular studies in Australia to date have focused on and described clonal sequence type (ST)24 strains infecting horses, wild psittacine, and humans. In contrast, the genetic identity of C. psittaci strains from captive psittacine hosts is scarce. In 2022, C. psittaci was detected in the faeces of a healthy captive blue-fronted parrot (Amazona aestiva). Genomic DNA was extracted and underwent whole-genome sequencing. Here we report the 1,160,701 bp circular chromosome of C. psittaci strain BF_amazon_parrot13 and the 7,553 bp circular plasmid pCpsBF_amazon_parrot13. Initial in silico multi-locus sequence typing and ompA genotyping revealed that BF_amazon_parrot13 belongs to the clonal ST24 lineage and has an ompA genotype A. Further context involved the genomes of 31 published ST24 strains, utilising a single-nucleotide variant (SNV) based clustering approach. Despite temporal, host, and biogeographical separation, a core-genome SNV-based phylogeny revealed that BF_amazon_parrot13 clustered in a distinct subcluster with seven C. psittaci strains from equines in Australia (maximum pairwise distance of 13 SNVs). BF_amazon_parrot13 represents the first complete C. psittaci ST24 genome from a captive psittacine in Australia. Furthermore, by using whole-genome sequencing to coordinate surveillance, we can also learn more about the possible health risks and routes of chlamydia transmission among people, livestock, wild animals, and domesticated animals.
Collapse
Affiliation(s)
- Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia; The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia.
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.
| | - Natalie Klukowski
- La Trobe University, School of Agriculture, Biomedicine and Environment, Department of Microbiology, Anatomy, Physiology and Pharmacology, Melbourne, Victoria 3086, Australia.
| | - Md Hakimul Haque
- Rajshahi University, Faculty of Veterinary and Animal Sciences, Department of Veterinary and Animal Sciences, Rajshahi 6205, Bangladesh.
| | - Subir Sarker
- La Trobe University, School of Agriculture, Biomedicine and Environment, Department of Microbiology, Anatomy, Physiology and Pharmacology, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
13
|
White RT, Anstey SI, Kasimov V, Jenkins C, Devlin J, El-Hage C, Pannekoek Y, Legione AR, Jelocnik M. One clone to rule them all: Culture-independent genomics of Chlamydia psittaci from equine and avian hosts in Australia. Microb Genom 2022; 8. [PMID: 36269227 PMCID: PMC9676050 DOI: 10.1099/mgen.0.000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen with zoonotic potential. In Australia, C. psittaci has been well reported as a cause of reproductive loss in mares which subsequently have been the source of infection and illness in some in-contact humans. To date, molecular typing studies describe the predominant and clonal C. psittaci sequence type (ST)24 strains in horse, psittacine, and human infections. We sought to assess the clonality between ST24 strains and the emergence of equine ST24 with a comprehensive genomics approach. We used culture-independent probe-based and metagenomic whole-genome sequencing to investigate 13 C. psittaci genomes from horses, psittacines, and a pigeon from Australia. Published genomes of 36 C. psittaci strains were also used to contextualise our Australian dataset and investigate lineage diversity. We utilised a single-nucleotide polymorphism (SNP) based clustering and multi-locus sequence typing (MLST) approach. C. psittaci has four major phylogenetic groups (PG1-4) based on core-genome SNP-based phylogeny. PG1 contained clonal global and Australian equine, psittacine, and human ST24 genomes, with a median pairwise SNP distance of 68 SNPs. PG2, PG3, and PG4 had greater genomic diversity, including diverse STs collected from birds, livestock, human, and horse hosts from Europe and North America and a racing pigeon from Australia. We show that the clustering of C. psittaci by MLST was congruent with SNP-based phylogeny. The monophyletic ST24 clade has four major sub-lineages. The genomes of 17 Australian human, equine, and psittacine strains collected between 2008 and 2021 formed the predominant ST24 sub-lineage 1 (emerged circa 1979). Despite a temporal distribution of 13 years, the genomes within sub-lineage 1 had a median pairwise SNP distance of 32 SNPs, suggesting a recent population expansion or potential cross-host transmission. However, two C. psittaci genomes collected in 2015 from Victorian parrots clustered into distinct ST24 sub-lineage 4 (emerged circa 1965) with ovine strain C19/98 from Germany. This work describes a comprehensive phylogenomic characterisation of ST24 and identifies a timeline of potential bird-to-equine spillover events.
Collapse
Affiliation(s)
- Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia.,The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
| | - Susan I Anstey
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Joanne Devlin
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, The Netherlands
| | - Alistair R Legione
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| |
Collapse
|
14
|
Li Q, Chen S, Yan Z, Fang H, Wang Z, He C. A Novel Intranasal Vaccine With PmpGs + MOMP Induces Robust Protections Both in Respiratory Tract and Genital System Post Chlamydia psittaci Infection. Front Vet Sci 2022; 9:855447. [PMID: 35529835 PMCID: PMC9072866 DOI: 10.3389/fvets.2022.855447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia psittaci (C. psittaci) is a crucial zoonotic pathogen that causes severe respiratory and reproductive system disease in humans and animals. In our pioneer study, polymorphic membrane protein G (PmpG) mediated attachment to host cells as the adhesions and induced immunity against C. psittaci infection. We hypothesize that multiple PmpG antigens adjuvanted with Vibrio cholerae ghost (VCG) and chitosan gel might trigger full protection via the intranasal route (i.n). In the present study, 40 SPF chickens were randomly divided into four groups, including the PmpGs + MOMP group (i.n), major outer membrane protein (MOMP) group (i.n), PmpGs (Pmp17G + Pmp20G + Pmp21G) group (i.n), and control groups (VCG + chitosan gel) (i.n). Post twice immunizations, the PmpGs + MOMP group yielded highly level-specific IgG, IgA antibodies, and lymphocyte proliferation. As for cytokines, IFN-γ expression was upregulated significantly, while IL-10 concentration was downregulated in the PmpGs + MOMP group compared with other groups. Post challenge, exudate inflammations in air sacs, bacterial loads in lungs, and bacterial shedding in throat swabs were reduced significantly in the PmpGs + MOMP group. In the second experiment, 100 breeder ducks were divided into the PmpGs + MOMP group (i.n), the commercial MOMP group (via intramuscular injection, i.m), the inactivated EBs group (i.n), and the control group (i.n), 25 ducks per group. Post challenge, the reduced egg production recovered soon in the inactivated EBs group and the PmpGs + MOMP group. Moreover, the aforementioned two groups induced higher robust IgG antibodies, lymphocyte proliferation, and IFN-γ secretions than the commercial MOMP vaccine did. Postmortem, lower bacterial loads of spleens were determined in the PmpGs + MOMP group and the inactivated EBs group. However, bacterial clearance of follicular membranes and shedding from the vaginal tract were not significant differences among the three tested groups. Furthermore, the PmpGs + MOMP group induced lower inflammations in the follicles and oviducts. Based on the above evidence, the combination of PmpGs and MOMP adjuvanted with chitosan gel and VCG via intranasal route could induce full protection both in the respiratory system and genital tract post C. psittaci infection. More importantly, the combination antigens are superior to the inactivated EBs antigen due to no contamination to the environment and less genital inflammation. The combination of PmpGs + MOMP adjuvanted with VCG and chitosan gel might be a promising novel vaccine by blocking C. psittaci infection from animals to human beings.
Collapse
Affiliation(s)
- Qiang Li
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Huanxin Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Zhanxin Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
- *Correspondence: Zhanxin Wang
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, China
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Cheng He
| |
Collapse
|
15
|
Marti H, Jelocnik M. Animal Chlamydiae: A Concern for Human and Veterinary Medicine. Pathogens 2022; 11:pathogens11030364. [PMID: 35335688 PMCID: PMC8951289 DOI: 10.3390/pathogens11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (H.M.); (M.J.)
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- Correspondence: (H.M.); (M.J.)
| |
Collapse
|
16
|
Experimental inoculation of chicken broilers with C. gallinacea strain 15-56/1. Sci Rep 2021; 11:23856. [PMID: 34903753 PMCID: PMC8668880 DOI: 10.1038/s41598-021-03223-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Chlamydia gallinacea is one of the new Chlamydia species, encountered predominantly in birds and occasionally in cattle, and its dissemination, pathogenicity and zoonotic potential have not yet been fully elucidated. Until now, no case of clinical infection has been described in poultry, but the number of studies is limited. This study was conducted to evaluate the course of infection and the impact on production parameters in chicken broilers inoculated with the strain 15-56/1 isolated from a Polish flock. The presence of C. gallinacea was confirmed in oropharyngeal and cloacal swabs by real-time PCR from the fifth day post inoculation (dpi). Pathogen DNA was also detected in many internal organs of inoculated chickens. All infected animals remained asymptomatic during the entire experimental period, although statistical analyses showed that broilers in the experimental group exhibited significantly lower body weight gains and feed conversion ratios than animals in the control group. These data indicate that subclinical C. gallinacea infection in broilers may lead to financial losses for poultry farmers.
Collapse
|
17
|
White RT, Legione AR, Taylor-Brown A, Fernandez CM, Higgins DP, Timms P, Jelocnik M. Completing the Genome Sequence of Chlamydia pecorum Strains MC/MarsBar and DBDeUG: New Insights into This Enigmatic Koala ( Phascolarctos cinereus) Pathogen. Pathogens 2021; 10:1543. [PMID: 34959498 PMCID: PMC8703710 DOI: 10.3390/pathogens10121543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.
Collapse
Affiliation(s)
- Rhys T. White
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Alistair R. Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alyce Taylor-Brown
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Cristina M. Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| |
Collapse
|
18
|
Genetic and phenotypic analysis of the pathogenic potential of two novel Chlamydia gallinacea strains compared to Chlamydia psittaci. Sci Rep 2021; 11:16516. [PMID: 34389764 PMCID: PMC8363750 DOI: 10.1038/s41598-021-95966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Chlamydia gallinacea is an obligate intracellular bacterium that has recently been added to the family of Chlamydiaceae. C. gallinacea is genetically diverse, widespread in poultry and a suspected cause of pneumonia in slaughterhouse workers. In poultry, C. gallinacea infections appear asymptomatic, but studies about the pathogenic potential are limited. In this study two novel sequence types of C. gallinacea were isolated from apparently healthy chickens. Both isolates (NL_G47 and NL_F725) were closely related to each other and have at least 99.5% DNA sequence identity to C. gallinacea Type strain 08-1274/3. To gain further insight into the pathogenic potential, infection experiments in embryonated chicken eggs and comparative genomics with Chlamydia psittaci were performed. C. psittaci is a ubiquitous zoonotic pathogen of birds and mammals, and infection in poultry can result in severe systemic illness. In experiments with embryonated chicken eggs, C. gallinacea induced mortality was observed, potentially strain dependent, but lower compared to C. psittaci induced mortality. Comparative analyses confirmed all currently available C. gallinacea genomes possess the hallmark genes coding for known and potential virulence factors as found in C. psittaci albeit to a reduced number of orthologues or paralogs. The presence of potential virulence factors and the observed mortality in embryonated eggs indicates C. gallinacea should rather be considered as an opportunistic pathogen than an innocuous commensal.
Collapse
|
19
|
Favaroni A, Hegemann JH. Chlamydia trachomatis Polymorphic Membrane Proteins (Pmps) Form Functional Homomeric and Heteromeric Oligomers. Front Microbiol 2021; 12:709724. [PMID: 34349750 PMCID: PMC8326573 DOI: 10.3389/fmicb.2021.709724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chlamydiae are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in C. trachomatis and 21 in C. pneumoniae, and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs. Motif-rich fragments of all nine C. trachomatis Pmps act as adhesins and are essential for infection. As autotransporters, most Pmp proteins are secreted through their β-barrel domain and localize on the surface of the chlamydial cell, where most of them are proteolytically processed. Classical autotransporters are monomeric proteins, which can function as toxins, proteases, lipases and monoadhesive adhesins. Here we show that selected recombinant C. trachomatis Pmp fragments form functional adhesion-competent multimers. They assemble into homomeric and heteromeric filaments, as revealed by non-denaturing gel electrophoresis, size-exclusion chromatography and electron microscopy. Heteromeric filaments reach 2 μm in length, significantly longer than homomeric structures. Filament formation was independent of the number of motifs present in the fragment(s) concerned and their relative affinity for host cells. Our functional studies demonstrated that only adhesion-competent oligomers were able to block a subsequent infection. Pre-loading of infectious chlamydial cells with adhesion-competent Pmp oligomers maintained the subsequent infection, while adhesion-incompetent structures reduced infectivity, presumably by blocking the function of endogenous Pmps. The very large number of possible heteromeric and homomeric Pmp complexes represents a novel mechanism to ensure stable adhesion and possibly host cell immune escape.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
20
|
Heijne M, van der Goot J, Buys H, Dinkla A, Roest HJ, van Keulen L, Koets A. Pathogenicity of Chlamydia gallinacea in chickens after oral inoculation. Vet Microbiol 2021; 259:109166. [PMID: 34217040 DOI: 10.1016/j.vetmic.2021.109166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022]
Abstract
Chlamydia gallinacea is a recently discovered and widespread obligate intracellular bacterium in chickens. In chickens, infections appear to be asymptomatic, but can result in reduced weight gain in broilers. Molecular typing revealed C. gallinacea is genetically diverse which might lead to differences in pathogenic potential between strains. However, studies about the pathogenesis of different C. gallinacea strains are still limited. In this study, the pathogenesis of C. gallinacea strain NL_G47 was investigated in three consecutive animal experiments. The first experiment served as a pilot in which a maximum culturable dose was administered orally to 13 chickens. Excretion of chlamydial DNA in cloacal swabs was measured during 11 days post infection, but no clinical signs were observed. The second and third experiment were a repetition of the first experiment, but now chickens were sacrificed at consecutive time points to investigate tissue dissemination of C. gallinacea. Again excretion of chlamydial DNA in cloacal swabs was detected and no clinical signs were observed in line with the results of the first experiment. PCR and immunohistochemistry of tissue samples revealed C. gallinacea infected the epithelium of the jejunum, ileum and caecum. Furthermore, C. gallinacea could be detected in macrophages in the lamina propria and in follicular dendritic cells (FDCs) of the B cell follicles in the caecal tonsil. Results of serology showed a systemic antibody response from day seven or eight and onward in all three experiments. The experiments with strain NL_G47 confirmed observations from field studies that C. gallinacea infection does not result in acute clinical disease and mainly resides in the epithelium of the gut. Whether the presence of C. gallinacea results in chronic persistent infections with long term and less obvious health effects in line with observations on other infections caused by Chlamydiae, needs further investigation.
Collapse
Affiliation(s)
- Marloes Heijne
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, the Netherlands.
| | - Jeanet van der Goot
- Department of Diagnostics and Crisis Organisation, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Herma Buys
- Department of Diagnostics and Crisis Organisation, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Annemieke Dinkla
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Hendrik Jan Roest
- Directorate Animal Supply Chain and Animal Welfare, Ministry of Agriculture, Nature and Food Quality, The Hague, the Netherlands
| | - Lucien van Keulen
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Ad Koets
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, the Netherlands; Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
A Same-Genus Screening Approach Reveals Novel Effectors and New Possibilities for Investigating Chlamydia Pathogenesis. J Bacteriol 2021; 203:JB.00157-21. [PMID: 33753471 PMCID: PMC8117527 DOI: 10.1128/jb.00157-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chlamydiae are obligate intracellular pathogens that rely on secreted effector proteins to establish their intracellular niche. In this issue of the Journal of Bacteriology, Yanatori et al describe a screen for C. pneumoniae effectors, performed in C. trachomatis, which identified several new proteins that are translocated during infection (Yanatori, Miura et al. 2021). More broadly, they demonstrate how new genetic approaches in C. trachomatis can be used to characterize the virulence factors of other Chlamydia species.
Collapse
|
22
|
Favaroni A, Trinks A, Weber M, Hegemann JH, Schnee C. Pmp Repertoires Influence the Different Infectious Potential of Avian and Mammalian Chlamydia psittaci Strains. Front Microbiol 2021; 12:656209. [PMID: 33854490 PMCID: PMC8039305 DOI: 10.3389/fmicb.2021.656209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Chlamydia psittaci is the etiological agent of chlamydiosis in birds and can be transmitted to humans, causing severe systemic disease. C. psittaci infects a broad range of hosts; strains are isolated not only from birds but also from mammals, where they seem to have a reduced infectious and zoonotic potential. Comparative analysis of chlamydial genomes revealed the coding sequences of polymorphic membrane proteins (Pmps) to be highly variable regions. Pmps are characterized as adhesins in C. trachomatis and C. pneumoniae and are immunoreactive proteins in several Chlamydia species. Thus, Pmps are considered to be associated with tissue tropism and pathogenicity. C. psittaci harbors 21 Pmps. We hypothesize that the different infectious potential and host tropism of avian and mammalian C. psittaci strains is dependent on differences in their Pmp repertoires. In this study, we experimentally confirmed the different virulence of avian and mammalian strains, by testing the survival rate of infected embryonated eggs and chlamydiae dissemination in the embryos. Further, we investigated the possible involvement of Pmps in host tropism. Analysis of pmp sequences from 10 C. psittaci strains confirmed a high degree of variation, but no correlation with host tropism was identified. However, comparison of Pmp expression profiles from different strains showed that Pmps of the G group are the most variably expressed, also among avian and mammalian strains. To investigate their functions, selected Pmps were recombinantly produced from one avian and one mammalian representative strain and their adhesion abilities and relevance for the infection of C. psittaci strains in avian and mammalian cells were tested. For the first time, we identified Pmp22D, Pmp8G, and OmcB as relevant adhesins, essential during infection of C. psittaci strains in general. Moreover, we propose Pmp17G as a possible key player for host adaptation, as it could only bind to and influence the infection in avian cells, but it had no relevant impact towards infection in mammalian cells. These data support the hypothesis that distinct Pmp repertoires in combination with specific host factors may contribute to host tropism of C. psittaci strains.
Collapse
Affiliation(s)
- Alison Favaroni
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Alexander Trinks
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|