1
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Fu K, Gao C, Li X, Zhang H, Xue B. 3-chloro-1,2-propanediol induces oxidative stress and promotes testicular damage and infertility in rats through CYP2C9. Reprod Toxicol 2024; 128:108633. [PMID: 38944211 DOI: 10.1016/j.reprotox.2024.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
3-chloro-1,2-propanediol (3-MCPD) is a newly discovered food process pollutant with nephrotoxicity. And the mechanism by which 3-MCPD affects male spermatogenesis has not been fully studied. Cell viability, blood-testis barrier (BTB) related protein, progesterone content, reactive oxygen species (ROS) generation, and cell apoptosis were determined by a CCK8 assay, western blot, ELISA, flow cytometry, and TUNEL staining, respectively. Wistar rats were divided into three groups: low-dose 3-MCPD, high-dose 3-MCPD, and control. Sperm parameters, hormonal levels, and biomarkers of oxidative stress in the testis and epididymis were detected by ELISA. Multiple molecular experiments including molecular docking and western blot were used to elucidate the underlying mechanisms. 3-MCPD affects testicular cell activity, and promotes ROS production and apoptosis. Disrupting the integrity of BTB in the body, downregulating sex hormones and sperm quality, and promoting apoptosis. 3-MCPD may function through CYP2C9. This study preliminarily explores the mechanism by which 3-MCPD affects spermatogenesis. It was found that 3-MCPD destroys the structure and function of BTB and damages the testicular function of male mice, thus affecting the process of spermatogenesis via CYP2C9.
Collapse
Affiliation(s)
- Kai Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215000, China
| | - Chuchu Gao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu 215002, China
| | - Xue Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215000, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215000, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
3
|
Chen Y, Hasegawa A, Wakimoto Y, Shibahara H. Update on the research on the antigens of anti-sperm antibodies over the last decade. J Reprod Immunol 2024; 164:104292. [PMID: 38964133 DOI: 10.1016/j.jri.2024.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
This review summarizes the advancements over a decade of research on antigens of anti-sperm antibodies (ASAs), which are key to male immune infertility. Despite the progress in assisted reproductive technologies, understanding the roles and mechanisms of ASAs and their antigens remains vital for immune infertility management. We conducted a comprehensive literature search on PubMed from January 2013 to December 2023 using the following keywords: "anti-sperm antibody," "sperm antigen," and "immune infertility." In this review, we focus on the discoveries in sperm antigen identification and characterization through proteomics, gene disruption technology, and immunoinformatics, along with the development of fertility biomarkers. Here, we discuss the clinical applications of improved ASA detection methods and the progress in the development of immunocontraceptive vaccines. The intersection of advanced diagnostic techniques and vaccine development represents a promising frontier in reproductive health. The findings also highlight the need for standardized ASA detection methods and a comprehensive molecular-level approach to understanding ASA-related infertility. These insights underscore the significance of ongoing reproductive immunology research in enhancing clinical fertility outcomes and contraceptive vaccine development.
Collapse
Affiliation(s)
- Yuekun Chen
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Akiko Hasegawa
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
4
|
Falcone M, Bocu K, Keskin H, Solorzano Vazquez JF, Banthia R, Mahendran T, Deger MD, Kv V, Mirko P, Harraz AM, Saleh R, Shah R, Agarwal A. Anti-sperm Antibody Positivity in Men with Varicocele: A Systematic Review and Meta-Analysis. World J Mens Health 2024; 42:42.e43. [PMID: 38606868 DOI: 10.5534/wjmh.240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Despite the significant role of varicocele in the pathogenesis of male infertility, its association with anti-sperm antibodies (ASA) remains controversial. This systematic review and meta-analysis (SRMA) aims to investigate the frequency of ASA positivity in men with varicocele. MATERIALS AND METHODS This SRMA is conducted in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines. We investigated the frequency of ASA positivity in ejaculates or serum of men with varicocele as compared to men without varicocele (controls). A literature search was performed using the Scopus and PubMed databases following the Population Exposure Comparison Outcome, Study Design model. Data extracted from eligible studies were meta-analyzed and expressed as odds ratios (ORs) and confidence intervals (CIs). RESULTS Out of 151 abstracts identified during the initial screening, 6 articles met the inclusion criteria and were included in the meta-analysis. Using mixed antiglobulin reaction (MAR) assay, 61 out of the 153 (39.8%) patients with varicocele tested positive for ASA in their ejaculates as compared to 22 out of the 129 control subjects (17%, OR=4.34 [95% CI: 1.09-17.28]; p=0.04). Using direct or indirect immunobead test, 30 out of 60 cases diagnosed with varicocele (50%) had shown ASA positivity in their ejaculates as compared to 16 out of 104 controls (15.4%, OR=3.57 [95% CI: 0.81-15.68]; p=0.09). Using enzyme-linked immunosorbent assay (ELISA), out of 89 varicocele patients, 33 (37.1%) tested positive for serum ASA as compared to 9 out of 57 participants in the control group (15.8%, OR=7.87 [95% CI: 2.39-25.89]; p<0.01). CONCLUSIONS This SRMA indicates that ASA positivity is significantly higher among men with varicocele when tested by direct method (MAR) or indirect method (ELISA). This data suggests an immunological pathology in infertile men with varicocele and may have implications for the management of these patients.
Collapse
Affiliation(s)
- Marco Falcone
- Department of Urology, Molinette Hospital, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, Torino, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Kadir Bocu
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Silopi State Hospital, Sirnak, Turkey
| | - Hakan Keskin
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, School of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Ravi Banthia
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Western General Hospital, Edinburgh, UK
| | - Tara Mahendran
- Global Andrology Forum, Moreland Hills, OH, USA
- Andrology Center, Coimbatore, India
| | - Muslim Dogan Deger
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Edirne Sultan 1st Murat State Hospital, Edirne, Turkey
| | - Vinod Kv
- Global Andrology Forum, Moreland Hills, OH, USA
- Centre for Urological Research and Evaluation, Thiruvananthapuram, India
| | - Preto Mirko
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Urology, Molinette Hospital A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Ahmed M Harraz
- Global Andrology Forum, Moreland Hills, OH, USA
- Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
- General Surgery Department, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Rupin Shah
- Global Andrology Forum, Moreland Hills, OH, USA
- Division of Andrology, Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
5
|
Aponte PM, Gutierrez-Reinoso MA, Garcia-Herreros M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life (Basel) 2023; 14:17. [PMID: 38276265 PMCID: PMC10820126 DOI: 10.3390/life14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Investigaciones en Biomedicina “One-Health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador;
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
6
|
Barrachina F, Ottino K, Elizagaray ML, Gervasi MG, Tu LJ, Markoulaki S, Spallanzani RG, Capen D, Brown D, Battistone MA. Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility. Proc Natl Acad Sci U S A 2023; 120:e2306797120. [PMID: 37676910 PMCID: PMC10500189 DOI: 10.1073/pnas.2306797120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maia Lina Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Leona J. Tu
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Styliani Markoulaki
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Raul G. Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA02115
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| |
Collapse
|
7
|
Leathersich S, Hart RJ. Immune infertility in men. Fertil Steril 2022; 117:1121-1131. [PMID: 35367058 DOI: 10.1016/j.fertnstert.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 11/04/2022]
Abstract
Male factors are implicated as the cause of roughly half of cases of infertility, and the presence of antisperm antibodies (ASA) may be responsible for some of these. Their presence is associated with a reduction in natural conception and live birth and impacts the success of assisted reproductive technologies. Interpretation of the data regarding ASAs and fertility is complicated by a lack of standardization in testing methodology and test thresholds and a lack of data on their prevalence in the healthy fertile population. Although their pathogenesis remains elusive, and many cases are idiopathic, a disruption in the immunologic blood-testis barrier (BTB) appears to contribute to the formation of ASA. As delineation of the specific antigen targets of ASA advances, it has been recognized that they may affect almost all aspects of sperm function, and ASA against different targets likely have specific mechanisms of impairing fertility. Intracytoplasmic sperm injection (ICSI) appears to be the most reliable method by which to overcome fertility impairment due to ASA, achieving similar outcomes to ASA-negative patients with regard to fertilization rates, embryonic development, clinical pregnancy rates, and live birth rates. The lack of consistency in testing for and reporting ASA remains a substantial barrier to achieving clarity in describing their role in infertility and the optimal management approach, and future research should use a unified approach to the detection and description of ASA. Determination of the specific antigens targeted by ASA, and their function and clinical relevance, would contribute to improving the understanding of ASA-mediated impacts on fertility and tailoring treatment appropriately to achieve the best outcomes for patients.
Collapse
Affiliation(s)
- Sebastian Leathersich
- King Edward Memorial Hospital, Perth, Australia; Fertility Specialists of Western Australia, Claremont, Australia
| | - Roger J Hart
- King Edward Memorial Hospital, Perth, Australia; Fertility Specialists of Western Australia, Claremont, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia.
| |
Collapse
|
8
|
Goericke-Pesch S, Reifarth L, Behrens Mathiesen C, Schuler G, Umbach AK, Körber H. Chronic Immune-Mediated Orchitis Is the Major Cause of Acquired Non-obstructive Azoospermia in Dogs. Front Vet Sci 2022; 9:865967. [PMID: 35433905 PMCID: PMC9010537 DOI: 10.3389/fvets.2022.865967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Azoospermia, the lack of spermatozoa in the ejaculate, is the most common finding in infertile but otherwise healthy male dogs and represents an increasing reproductive health issue in men, too. The diagnosis can be further classified as non-obstructive azoospermia and obstructive azoospermia due to an obstruction of the deferent ducts. Although non-obstructive azoospermia comprises more than half of azoospermic cases in men and is a common cause of infertility in the male dog, knowledge of the underlying etiology and pathophysiology is still strongly limited, and much uncertainty exists about the true incidence and possible treatment options. Therefore, this study aims to investigate and characterize infertile canine patients in detail by combining results of andrological examinations (clinical parameters, semen analysis, bacterial examination of semen, and Brucella canis serology), endocrine analysis (luteinizing hormone, testosterone, estradiol-17ß, and thyroid function), analysis of the alkaline phosphatase in seminal plasma, and histological assessment of testicular biopsies of 10 azoospermic dogs. Our results not only verify non-obstructive etiology for 9/10 cases of canine azoospermia but also further identified significant histopathological changes of the testicular tissue with severely disrupted spermatogenesis, including fibrotic remodeling, vacuolization, Sertoli-cell-only syndrome, tubular shadows, and an increase of the interstitial and vascular area. In addition, three dogs showed local and six dogs generalized immune-cell infiltration, indicating chronic immune-mediated orchitis. Only in one case (no. 1) that no immune cells were found, and obstructive azoospermia was suspected due to low alkaline phosphatase activity. Furthermore, the detection of anti-thyroideal antibodies in two dogs indicates an autoimmune thyroid disease and a correlation between the occurrence of thyroidal disorders and azoospermia. Our results confirm previous findings and contribute additional evidence suggesting that chronic immune-mediated orchitis is the major cause of infertility in dogs. Further studies should focus on uncovering underlying inflammatory processes behind spermatogenic failure in these cases and identify possible treatment options to (re-)initialize spermatogenesis.
Collapse
Affiliation(s)
- Sandra Goericke-Pesch
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Sandra Goericke-Pesch
| | - Larena Reifarth
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Behrens Mathiesen
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Gerhard Schuler
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Giessen, Germany
| | | | - Hanna Körber
- Department of Veterinary Sciences, Section for Veterinary Reproduction and Obstetrics, Faculty of Health and Medical Sciences, University of Copenhagen, Tåstrup, Denmark
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
9
|
Liu H, Zheng H, Li Y, Tang Y, Peng H, Li Q, Zhuang J, Zhou Y, Zhou Y, Tu X, Zhang X. "Seminal testosterone", rising viewpoint of local spermatogenesis in nonobstructive azoospermia: One center long-term bidirectional cohort study. Front Endocrinol (Lausanne) 2022; 13:992556. [PMID: 36568123 PMCID: PMC9772016 DOI: 10.3389/fendo.2022.992556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Reproductive hormones are a traditional good method to evaluate spermatogenesis but might not accurately represent local spermatogenesis. To find a more accurate method, seminal reproductive hormones were studied. METHODS A bidirectional cohort study was performed. A total of 126 infertile men from 2018 to 2019 were retrospectively analyzed. They were divided into nonobstructive azoospermia (NOA), oligozoospermia (OLZ) and normal (NOR) groups. A prospective study was conducted on patients in the NOA and OLZ groups for 2 years. Microscopic testicular sperm extraction was performed for NOA patients, who were divided into a focal spermatogenesis group (FS) and an idiopathic azoospermia group (IA). Drug treatment was for OLZ patients, who were divided into a valid group (VA) and an invalid group (IN). The differences in sperm parameters and reproductive hormones were compared. ANOSIM analysis was used between and within groups. Pearson correlation analysis, CO inertia analysis and Proctor's analysis were for relationships. ROC curve for the specificity and sensitivity. Time series analysis was for the trends between hormones and time. RESULTS The b-FSH, b-LH, s-T and ΔT in the NOA group were significantly higher than those in the OLZ and NOR groups. However, the s-FSH, s-E2, s-P, ΔFSH, ΔLH, ΔP and ΔE2 were lower. Thirty-one NOA patients underwent MTSE, of whom 12 had sperm (FS) and 19 had no sperm (IA). The s-FSH and s-E2 of the FS group were higher than those of the IA group. Twenty-six OLZ patients completed 30 days of treatment, of which 11 had an improved sperm count (VA) and 15 had no (IN). The ΔT of the VA group was higher than that of the IN group. After follow-up for 2 years, 18 patients' results showed that b-FSH, b-LH and s-T were different over time, with delays of 19, 3 and -19 days. SC is closely related to pH, s-FSH, s-LH, s-E2, s-P, s-T, b-FSH, b-LH, ΔFSH, ΔLH, ΔP, ΔE2 and ΔT. There were complex common trends and relationships between different kinds of hormones. s-FSH, s-LH, s-E2, s-P, s-T, b-FSH and b-LH were useful to judge spermatogenesis, of which s-T, b-FSH and b-LH were more sensitive. If s-T, b-FSH and b-LH reached 64.4, 9.4 and 4.7, respectively, their prediction performance was the strongest. CONCLUSION Seminal testosterone is sensitive for judging local spermatogenesis in nonobstructive azoospermia patients, which may be the direction of local spermatogenesis in nonobstructive azoospermia. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/index.aspx, identifier ChiCTR2200060463.
Collapse
Affiliation(s)
- Huang Liu
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| | - Houbin Zheng
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yuehua Li
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yuqian Tang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Hongbo Peng
- Department of Clinical Laboratory, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Qianyi Li
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Jiaming Zhuang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yingyi Zhou
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Yu Zhou
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
| | - Xiang’an Tu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| | - Xinzong Zhang
- Department of Andrology, National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China
- *Correspondence: Xiang’an Tu, ; Xinzong Zhang, ; Huang Liu,
| |
Collapse
|