1
|
Chen KY, Chan HC, Wei LY, Chan CM. Efficacy of gabapentin and pregabalin for treatment of post refractive surgery pain: a systematic review and meta-analysis. Int Ophthalmol 2024; 44:409. [PMID: 39448432 DOI: 10.1007/s10792-024-03300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION For ophthalmic patients, eye discomfort is a major problem that requires efficient pain treatment techniques. Pregabalin and gabapentin have surfaced as viable treatments for post-refractive surgery pain. To manage pain after refractive surgery, gabapentin and pregabalin were evaluated in this systematic review and meta-analysis. METHODOLOGY A thorough search of databases including PubMed, Embase, Cochrane Library, and CINAHL was performed until March 2024. Inclusion criteria were randomized controlled trials assessing pregabalin and/or gabapentin's effectiveness in treating pain post-PRK, LASIK, and LASEK surgeries. RESULTS Six studies met inclusion criteria, comprising a total of 391 patients undergoing various corneal surgeries. The meta-analysis revealed that pregabalin was significantly more effective than placebo in reducing pain on the first and second postoperative days (SMD day 1: -0.32, 95% CI -0.54, -0.09; SMD day 2: -0.55, 95% CI -0.85, -0.25), while gabapentin showed significant pain reduction on the second day only (SMD day 2: -0.42, 95% CI -0.71, -0.13). Combined analysis for both medications showed significant pain reduction on the first- and second-days post-surgery. No significant increase in adverse events was associated with either medication. Publication bias was minimal except for a slight asymmetry noted on day 1 effectiveness. CONCLUSION Pregabalin and gabapentin are effective in reducing postoperative pain following refractive surgeries, with pregabalin showing a greater effect. Both medications are safe, with no significant increase in adverse events. Further research with standardized methodologies and long-term follow-up is recommended to optimize postoperative pain management in ocular surgeries.
Collapse
Affiliation(s)
- Kai-Yang Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoi-Chun Chan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Li-Yun Wei
- Department of Pharmacy, Cardinal Tien Hospital, New Taipei City, Taiwan.
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Rehman Z, Alqahtani F, Ashraf W, Rasool MF, Muneeb Anjum SM, Ahmad T, Alsanea S, Alasmari F, Imran I. Neuroprotective potential of topiramate, pregabalin and lacosamide combination in a rat model of acute SE and intractable epilepsy: Perspectives from electroencephalographic, neurobehavioral and regional degenerative analysis. Eur J Pharmacol 2024; 978:176792. [PMID: 38950834 DOI: 10.1016/j.ejphar.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
The lithium-pilocarpine model is commonly used to recapitulate characteristics of human intractable focal epilepsy. In the current study, we explored the impact of topiramate (TPM) alone and in combination with pregabalin and lacosamide administration for 6 weeks on the evolution of spontaneous recurrent seizures (SRS) and disease-modifying potential on associated neuropsychiatric comorbidities. In addition, redox impairments and neurodegeneration in hippocampus regions vulnerable to temporal lobe epilepsy (TLE) were assessed by cresyl violet staining. Results revealed that acute electrophysiological (EEG) profiling of the ASD cocktail markedly halted sharp ictogenic spikes as well as altered dynamics of brain wave oscillations thus validating the need for polytherapy vs. monotherapy. In TLE animals, pharmacological intervention for 6 weeks with topiramate 10 mg/kg in combination with PREG and LAC at the dose of 20 mg/kg exhibited marked protection from SRS incidence, improved body weight, offensive aggression, anxiety-like behavior, cognitive impairments, and depressive-like behavior (p < 0.05). Moreover, combination therapy impeded redox impairments as evidenced by decreased MDA and AchE levels and increased activity of antioxidant SOD, GSH enzymes. Furthermore, polytherapy rescued animals from SE-induced neurodegeneration with increased neuronal density in CA1, CA3c, CA3ab, hilus, and granular cell layer (GCL) of the dentate gyrus. In conclusion, early polytherapy with topiramate in combination with pregabalin and lacosamide prompted synergy and prevented epileptogenesis with associated psychological and neuropathologic alterations.
Collapse
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, 75270, Pakistan
| | - Tanveer Ahmad
- Institut pour L'Avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, France
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
3
|
Sarchi PV, Gomez Cuautle D, Rossi A, Ramos AJ. Participation of the spleen in the neuroinflammation after pilocarpine-induced status epilepticus: implications for epileptogenesis and epilepsy. Clin Sci (Lond) 2024; 138:555-572. [PMID: 38602323 DOI: 10.1042/cs20231621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.
Collapse
Affiliation(s)
- Paula Virginia Sarchi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Dante Gomez Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155 3er piso (1121) Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Caffeine intoxication: Behavioral and electrocorticographic patterns in Wistar rats. Food Chem Toxicol 2022; 170:113452. [DOI: 10.1016/j.fct.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
|
6
|
Hwang Y, Kim HC, Shin EJ. Effect of rottlerin on astrocyte phenotype polarization after trimethyltin insult in the dentate gyrus of mice. J Neuroinflammation 2022; 19:142. [PMID: 35690821 PMCID: PMC9188234 DOI: 10.1186/s12974-022-02507-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 06/01/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It has been demonstrated that reactive astrocytes can be polarized into pro-inflammatory A1 phenotype or anti-inflammatory A2 phenotype under neurotoxic and neurodegenerative conditions. Microglia have been suggested to play a critical role in astrocyte phenotype polarization by releasing pro- and anti-inflammatory mediators. In this study, we examined whether trimethyltin (TMT) insult can induce astrocyte polarization in the dentate gyrus of mice, and whether protein kinase Cδ (PKCδ) plays a role in TMT-induced astrocyte phenotype polarization. METHODS Male C57BL/6 N mice received TMT (2.6 mg/kg, i.p.), and temporal changes in the mRNA expression of A1 and A2 phenotype markers were evaluated in the hippocampus. In addition, temporal and spatial changes in the protein expression of C3, S100A10, Iba-1, and p-PKCδ were examined in the dentate gyrus. Rottlerin (5 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of A1 and A2 transcripts, p-PKCδ, Iba-1, C3, S100A10, and C1q was evaluated 6 days after TMT treatment. RESULTS TMT treatment significantly increased the mRNA expression of A1 and A2 phenotype markers, and the increased expression of A1 markers remained longer than that of A2 markers. The immunoreactivity of the representative A1 phenotype marker, C3 and A2 phenotype marker, S100A10 peaked 6 days after TMT insult in the dentate gyrus. While C3 was expressed evenly throughout the dentate gyrus, S100A10 was highly expressed in the hilus and inner molecular layer. In addition, TMT insult induced microglial p-PKCδ expression. Treatment with rottlerin, a PKCδ inhibitor, decreased Iba-1 and C3 expression, but did not affect S100A10 expression, suggesting that PKCδ inhibition attenuates microglial activation and A1 astrocyte phenotype polarization. Consistently, rottlerin significantly reduced the expression of C1q and tumor necrosis factor-α (TNFα), which has been suggested to be released by activated microglia and induce A1 astrocyte polarization. CONCLUSION We demonstrated the temporal and spatial profiles of astrocyte polarization after TMT insult in the dentate gyrus of mice. Taken together, our results suggest that PKCδ plays a role in inducing A1 astrocyte polarization by promoting microglial activation and consequently increasing the expression of pro-inflammatory mediators after TMT insult.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
8
|
Korai SA, Sepe G, Luongo L, Cragnolini AB, Cirillo G. Editorial: Glial Cells, Maladaptive Plasticity, and Neurodegeneration: Mechanisms, Targeted Therapies, and Future Directions. Front Cell Neurosci 2021; 15:682524. [PMID: 33994952 PMCID: PMC8119640 DOI: 10.3389/fncel.2021.682524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sohaib Ali Korai
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy.,IRCSS Neuromed, Pozzilli, Italy
| | - Andrea Beatriz Cragnolini
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Giovanni Cirillo
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Brain angiotensin system: a new promise in the management of epilepsy? Clin Sci (Lond) 2021; 135:725-730. [PMID: 33729497 DOI: 10.1042/cs20201296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin-angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263-2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.
Collapse
|
10
|
Perez-Ramirez MB, Gu F, Prince DA. Prolonged prophylactic effects of gabapentin on status epilepticus-induced neocortical injury. Neurobiol Dis 2020; 142:104949. [PMID: 32442680 PMCID: PMC8083016 DOI: 10.1016/j.nbd.2020.104949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
Long-term consequences of status epilepticus (SE) occur in a significant proportion of those who survive the acute episode. We developed an in vivo model of acute focal neocortical SE (FSE) to study long-term effects on local cortical structure and function and potential strategies to mitigate adverse consequences of SE. An acute 2 h episode of FSE was induced in anesthetized mice by epidural application of gabazine +4-aminopyridine over sensorimotor neocortex. Ten and 30 days later, the morphological and functional consequences of this single episode of FSE were studied using immunocytochemical and electrophysiological techniques. Results, focused on cortical layer V, showed astrogliosis, microgliosis, decreased neuronal density, and increased excitatory synapses, along with increased immunoreactivity for thrombospondin 2 (TSP2) and α2δ-1 proteins. In addition, neocortical slices, obtained from the area of prior focal seizure activity, showed abnormal epileptiform burst discharges along with increases in the frequency of miniature and spontaneous excitatory postsynaptic currents in layer V pyramidal cells, together with decreases in both parvalbumin immunoreactivity (PV-IR) and the frequency of miniature inhibitory postsynaptic currents in layer V pyramidal cells. Treatment with an approved drug, gabapentin (GBP) (ip 100 mg/kg/day 3 × /day for 7 days following the FSE episode), prevented the gliosis, the enhanced TSP2- and α2δ-1- IR and the increased excitatory synaptic density in the affected neocortex. This model provides an approach for assessing adverse effects of FSE on neocortical structure and function and potential prophylactic treatments.
Collapse
Affiliation(s)
- Maria-Belen Perez-Ramirez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
12
|
Rosciszewski G, Cadena V, Auzmendi J, Cieri MB, Lukin J, Rossi AR, Murta V, Villarreal A, Reinés A, Gomes FCA, Ramos AJ. Detrimental Effects of HMGB-1 Require Microglial-Astroglial Interaction: Implications for the Status Epilepticus -Induced Neuroinflammation. Front Cell Neurosci 2019; 13:380. [PMID: 31507379 PMCID: PMC6718475 DOI: 10.3389/fncel.2019.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.
Collapse
Affiliation(s)
- Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Cadena
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Lukin
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia R Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia Reinés
- Laboratorio de Neurofarmacología, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Merelli A, Ramos AJ, Lazarowski A, Auzmendi J. Convulsive Stress Mimics Brain Hypoxia and Promotes the P-Glycoprotein (P-gp) and Erythropoietin Receptor Overexpression. Recombinant Human Erythropoietin Effect on P-gp Activity. Front Neurosci 2019; 13:750. [PMID: 31379495 PMCID: PMC6652211 DOI: 10.3389/fnins.2019.00750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Erythropoietin (EPO) is not only a hormone that promotes erythropoiesis but also has a neuroprotective effect on neurons attributed to its known anti-apoptotic action. Previously, our group has demonstrated that recombinant-human EPO (rHu-EPO) can protect neurons and recovery motor activity in a chemical focal brain hypoxia model (Merelli et al., 2011). We and others also have reported that repetitive seizures can mimic a hypoxic- like condition by HIF-1α nuclear translocation and high neuronal expression P-gp. Here, we report that a single 20-min status epilepticus (SE) induces P-gp and EPO-R expression in cortical pyramidal neurons and only P-gp expression in astrocytes. In vitro, excitotoxic stress (300 μM glutamate, 5 min), can also induce the expression of EPO-R and P-gp simultaneously with both HIF-1α and NFkB nuclear translocation in primary cortical neurons. Primary astrocytes exposed to chemical hypoxia with CoCl2 (0.3 mM, 6 h) increased P-gp expression as well as an increased efflux of Rhodamine 123 (Rho123) that is a P-gp substrate. Tariquidar, a specific 3er generation P-gp-blocker was used as an efflux inhibitor control. Astrocytes treated with rHu-EPO showed a significant recovery of the Rho123 retention in a similar way as seen by Tariquidar, demonstrating for first time that rHu-EPO can inhibit the P-gp-dependent efflux activity. Taking together, these data suggest that stimulation of EPO depending signaling system could not only play a central role in brain cell protection, but this system could be a new tool for reverse the pharmacoresistant phenotype in refractory epilepsy as well as in other pharmacoresistant hypoxic brain diseases expressing P-gp.
Collapse
Affiliation(s)
- Amalia Merelli
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeronimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|