1
|
Wilson TK, Zishiri OT. Prostate Cancer: A Review of Genetics, Current Biomarkers and Personalised Treatments. Cancer Rep (Hoboken) 2024; 7:e70016. [PMID: 39410867 PMCID: PMC11480670 DOI: 10.1002/cnr2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Prostate cancer is the second leading cause of cancer deaths in men, second only to lung cancer. Despite this, diagnosis and prognosis methods remain limited, with effective treatments being few and far between. Traditionally, prostate cancer is initially tested for through a prostate serum antigen (PSA) test and a digital rectum examination (DRE), followed by confirmation through an invasive prostate biopsy. The DRE and biopsy are uncomfortable for the patient, so less invasive, accurate diagnostic tools are needed. Current diagnostic tools, along with genes that hold possible biomarker uses in diagnosis, prognosis and indications for personalised treatment plans, were reviewed in this article. RECENT FINDINGS Several genes from multiple families have been identified as possible biomarkers for disease, including those from the MYC and ETS families, as well as several tumour suppressor genes, Androgen Receptor signalling genes and DNA repair genes. There have also been advances in diagnostic tools, including MRI-targeted and liquid biopsies. Several personalised treatments have been developed over the years, including those that target metabolism-driven prostate cancer or those that target inflammation-driven cancer. CONCLUSION Several advances have been made in prostate cancer diagnosis and treatment, but the disease still grows year by year, leading to more and more deaths annually. This calls for even more research into this disease, allowing for better diagnosis and treatment methods and a better chance of patient survival.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
2
|
Gallagher K, Strobl MA, Park DS, Spoendlin FC, Gatenby RA, Maini PK, Anderson AR. Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy. Cancer Res 2024; 84:1929-1941. [PMID: 38569183 PMCID: PMC11148552 DOI: 10.1158/0008-5472.can-23-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Standard-of-care treatment regimens have long been designed for maximal cell killing, yet these strategies often fail when applied to metastatic cancers due to the emergence of drug resistance. Adaptive treatment strategies have been developed as an alternative approach, dynamically adjusting treatment to suppress the growth of treatment-resistant populations and thereby delay, or even prevent, tumor progression. Promising clinical results in prostate cancer indicate the potential to optimize adaptive treatment protocols. Here, we applied deep reinforcement learning (DRL) to guide adaptive drug scheduling and demonstrated that these treatment schedules can outperform the current adaptive protocols in a mathematical model calibrated to prostate cancer dynamics, more than doubling the time to progression. The DRL strategies were robust to patient variability, including both tumor dynamics and clinical monitoring schedules. The DRL framework could produce interpretable, adaptive strategies based on a single tumor burden threshold, replicating and informing optimal treatment strategies. The DRL framework had no knowledge of the underlying mathematical tumor model, demonstrating the capability of DRL to help develop treatment strategies in novel or complex settings. Finally, a proposed five-step pathway, which combined mechanistic modeling with the DRL framework and integrated conventional tools to improve interpretability compared with traditional "black-box" DRL models, could allow translation of this approach to the clinic. Overall, the proposed framework generated personalized treatment schedules that consistently outperformed clinical standard-of-care protocols. SIGNIFICANCE Generation of interpretable and personalized adaptive treatment schedules using a deep reinforcement framework that interacts with a virtual patient model overcomes the limitations of standardized strategies caused by heterogeneous treatment responses.
Collapse
Affiliation(s)
- Kit Gallagher
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Derek S. Park
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Fabian C. Spoendlin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
| | - Robert A. Gatenby
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Maksó L, Szele B, Ispán D, Gömöry Á, Mahó S, Skoda-Földes R. Catalyst- and excess reagent recycling in aza-Michael additions. Org Biomol Chem 2024; 22:2465-2473. [PMID: 38436400 DOI: 10.1039/d3ob02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
16α-Azolyl-pregnenolone derivatives were prepared via 2-butyl-1,1,3,3-tetramethylguanidine (n-Bu-TMG) catalysed aza-Michael addition of 16-dehydropregnenolone (16-DHP) carried out in [bmim][BF4]. The application of the guanidine base and the imidazolium ionic liquid made it possible to recycle not only the catalyst/solvent mixture but also the excess of the N-heterocyclic reagent. By the introduction of CO2 at the end of the reaction, both the guanidine base and the unreacted (excess) reagent could be converted into ionic species that remained dissolved in the ionic liquid phase, while the steroid components were extracted with an apolar solvent. After the removal of CO2, the experiment could be repeated by the addition of the steroid substrate and only an equimolar amount of the N-heterocycle. The methodology was successfully applied to a number of N-heterocycles, such as imidazole, pyrazole, 1,2,3- and 1,2,4-triazoles, and benzimidazole. Indazole and indole could also be converted into the corresponding products, but a stronger base had to be used to obtain a recyclable system.
Collapse
Affiliation(s)
- Lilla Maksó
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Boglárka Szele
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Dávid Ispán
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| | - Ágnes Gömöry
- Hungarian Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Sándor Mahó
- Chemical Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői út 19-21, Hungary
| | - Rita Skoda-Földes
- University of Pannonia, Department of Organic Chemistry, Egyetem u. 10, P.O. Box 158, H-8200 Veszprém, Hungary.
| |
Collapse
|
4
|
Tumilovich A, Yablokov E, Mezentsev Y, Ershov P, Basina V, Gnedenko O, Kaluzhskiy L, Tsybruk T, Grabovec I, Kisel M, Shabunya P, Soloveva N, Vavilov N, Gilep A, Ivanov A. The Multienzyme Complex Nature of Dehydroepiandrosterone Sulfate Biosynthesis. Int J Mol Sci 2024; 25:2072. [PMID: 38396748 PMCID: PMC10889563 DOI: 10.3390/ijms25042072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.
Collapse
Affiliation(s)
- Anastasiya Tumilovich
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Evgeniy Yablokov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Yuri Mezentsev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Pavel Ershov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Viktoriia Basina
- Research Centre for Medical Genetics, 1 Moskvorechye Street, 115522 Moscow, Russia;
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Leonid Kaluzhskiy
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Tatsiana Tsybruk
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Irina Grabovec
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Maryia Kisel
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Polina Shabunya
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
| | - Natalia Soloveva
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Nikita Vavilov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Andrei Gilep
- Institute of Bioorganic Chemistry NASB, 5 Building 2, V.F. Kuprevich Street, 220141 Minsk, Belarus; (A.T.); (T.T.); (I.G.); (M.K.); (P.S.); (A.G.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (E.Y.); (P.E.); (O.G.); (L.K.); (N.S.); (N.V.); (A.I.)
| |
Collapse
|
5
|
Joshi BP, Bhandare VV, Vankawala M, Patel P, Patel R, Vyas B, Krishnamurty R. Friedelin, a novel inhibitor of CYP17A1 in prostate cancer from Cassia tora. J Biomol Struct Dyn 2023; 41:9695-9720. [PMID: 36373336 DOI: 10.1080/07391102.2022.2145497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
In prostate cancer (PC), drugs targeting CYP17A1 have shown great success in regulating PC progression. However, successful drug molecules show adverse side effects and therapeutic resistance in PC. Therefore, we proposed to discover the potent phytochemical-based inhibitor against CYP17A1 using virtual screening. In this study, a phytochemicals library of ∼13800 molecules was selected to screen the best possible inhibitors against CYP17A1. A molecular modelling approach investigated detailed intermolecular interactions, their structural stability, and binding affinity. Further, in vitro and in vivo studies were performed to confirm the anticancer activity of identified potential inhibitor against CYP17A1. Friedelin from Cassia tora (CT) is identified as the best possible inhibitor from the screened library. MD simulation study reveals stable binding of Friedelin to conserved binding pocket of CYP17A1 with higher binding affinity than studied control, that is, Orteronel. Friedelin was tested on hormone-sensitive (22Rv1) and insensitive (DU145) cell lines and the IC50 value was found to be 72.025 and 81.766 µg/ml, respectively. CT extract showed a 25.28% IC50 value against 22Rv1, ∼92.6% increase in late Apoptosis/Necrosis, and three folds decrease in early apoptosis in treated cells compared to untreated cells. Further, animal studies show a marked decrease in prostate weight by 39.6% and prostate index by 36.5%, along with a reduction in serum PSA level by 71.7% and testosterone level by 92.4% compared to the testosterone group, which was further validated with histopathological studies. Thus, we propose Friedelin and CT extract as potential leads, which could be taken further for drug development in PC.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mahima Vankawala
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Prittesh Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| | - Rajesh Patel
- Bioinformatics and Supercomputer Lab., Department of Biosciences (UGC-SAP-DRS-II & DST-FIST-I), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Bhavin Vyas
- Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| | - Ramar Krishnamurty
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat, India
| |
Collapse
|
6
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol 2022; 86:753-768. [PMID: 34271147 DOI: 10.1016/j.semcancer.2021.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.
Collapse
|
8
|
Musil M, Jezik A, Jankujova M, Stourac J, Galgonek J, Mustafa Eyrilmez S, Vondrasek J, Damborsky J, Bednar D. Fully automated virtual screening pipeline of FDA-approved drugs using CaverWeb. Comput Struct Biotechnol J 2022; 20:6512-6518. [DOI: 10.1016/j.csbj.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
9
|
Characterization of Mutations Causing CYP21A2 Deficiency in Brazilian and Portuguese Populations. Int J Mol Sci 2021; 23:ijms23010296. [PMID: 35008721 PMCID: PMC8745212 DOI: 10.3390/ijms23010296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022] Open
Abstract
Deficiency of 21-hydroxylase enzyme (CYP21A2) represents 90% of cases in congenital adrenal hyperplasia (CAH), an autosomal recessive disease caused by defects in cortisol biosynthesis. Computational prediction and functional studies are often the only way to classify variants to understand the links to disease-causing effects. Here we investigated the pathogenicity of uncharacterized variants in the CYP21A2 gene reported in Brazilian and Portuguese populations. Physicochemical alterations, residue conservation, and effect on protein structure were accessed by computational analysis. The enzymatic performance was obtained by functional assay with the wild-type and mutant CYP21A2 proteins expressed in HEK293 cells. Computational analysis showed that p.W202R, p.E352V, and p.R484L have severely impaired the protein structure, while p.P35L, p.L199P, and p.P433L have moderate effects. The p.W202R, p.E352V, p.P433L, and p.R484L variants showed residual 21OH activity consistent with the simple virilizing phenotype. The p.P35L and p.L199P variants showed partial 21OH efficiency associated with the non-classical phenotype. Additionally, p.W202R, p.E352V, and p.R484L also modified the protein expression level. We have determined how the selected CYP21A2 gene mutations affect the 21OH activity through structural and activity alteration contributing to the future diagnosis and management of CYP21A2 deficiency.
Collapse
|
10
|
Xu X, Hu K, Shi H, Yu Y, Xu J, Sun Y. The single-nucleotide polymorphism rs743572 of CYP17A1 shows significant association with polycystic ovary syndrome: a meta-analysis. Reprod Biomed Online 2021; 43:941-951. [PMID: 34538754 DOI: 10.1016/j.rbmo.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial reproductive and endocrine disease, believed to be caused by aberrant steroid biosynthesis pathways involving cytochrome P450, 17α-hydroxylase (CYP17A1). This meta-analysis aimed to evaluate the association between CYP17A1 polymorphism rs743572 and PCOS risk. Studies on the CYP17A1 gene were retrieved by searching PubMed, Embase and Web of Science and statistical analyses were performed by STATA software. Fifteen eligible studies were included, dated from January 1994 to 19 November 2020, involving 2277 patients with PCOS and 1913 control individuals. Overall, the results showed that the rs743572 T>C mutation was most likely to be associated with PCOS risk under the recessive model, which was further confirmed by heterogeneity analysis and publication bias detection (CC versus CT + TT, odds ratio [OR] 1.24, 95% confidence interval [CI] 1.02-1.50, P = 0.028, I² = 35.9%). Moreover, subgroup analysis by ethnicity demonstrated that Caucasian but not Asian women carrying the CC genotype of rs743572 had an elevated risk of PCOS (CC versus CT + TT, OR 1.45, 95% CI 1.03-2.06, P = 0.035, I² = 15.10%, six studies). In conclusion, rs743572 is highly likely to be a risk factor for PCOS, and the mutant genotype CC may increase susceptibility to PCOS in Caucasians rather than Asians.
Collapse
Affiliation(s)
- Xiqiao Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyue Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiping Yu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Bernhardt R, Neunzig J. Underestimated reactions and regulation patterns of adrenal cytochromes P450. Mol Cell Endocrinol 2021; 530:111237. [PMID: 33722664 DOI: 10.1016/j.mce.2021.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022]
Abstract
Although cytochrome P450 (CYP) systems including the adrenal ones are being investigated since many years, there are still reactions and regulation patterns that have been underestimated ever since. This review discusses neglected ones to bring them into the focus of investigators working in the field. Novel substrates and reactions described for adrenal CYPs recently point to the fact that different from what has been believed for many years, adrenal CYPs are less selective than previously thought. The conversion of steroid sulfates, intermediates of steroid biosynthesis as well as of exogenous compounds are being discussed here in more detail and consequences for further studies are drawn. Furthermore, it was shown that protein-protein interactions may have an important effect not only on the activity of adrenal CYPs, but also on the product pattern of the reactions. It was found that, as expected, the stoichiometry of CYP:redox partner plays an important role for tuning the activity. In addition, competition between different CYPs for the redox partner and for electrons and possible alterations by mutants in the efficiency of electron transfer play an important role for the activity and product pattern. Moreover, the influence of phosphorylation and small charged molecules like natural polyamines on the activity of adrenal systems has been demonstrated in-vitro indicating a possible regulation of adrenal CYP reactions by affecting redox partner recognition and binding affinity. Finally, an effect of the genetic background on the consequences of mutations in adrenal CYPs found in patients was suggested from corresponding in-vitro studies indicating that a different genetic background might be able to significantly affect the activity of a CYP mutant.
Collapse
Affiliation(s)
- Rita Bernhardt
- Department of Biochemistry, Campus B2.2, Saarland University, D-66123, Saarbrücken, Germany.
| | - Jens Neunzig
- Institute of Molecular Plant Biology, Campus A2.4, Saarland University, D-66123, Saarbrücken, Germany
| |
Collapse
|
12
|
Mehralitabar H, Ghasemi AS, Gholizadeh J. Abiraterone and D4, 3-keto Abiraterone binding to CYP17A1, a structural comparison study by molecular dynamic simulation. Steroids 2021; 167:108799. [PMID: 33465380 DOI: 10.1016/j.steroids.2021.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
The importance of computer-aided drug design and development is clear nowadays. These approaches smooth the way of designing some efficient candidates based on drugs in use. At this place, we studied the mechanism of D4-abiraterone (D4A), the active metabolite of Abiraterone (Abi), binding to CYP17A1 compared with Abi. The molecular dynamics simulation results reveal that the metabolite, which lacks the key 3β-OH group, has a varied H-bond forming pattern. The critical H-bond between 3β-OH of Abi with Asn_202 turns to 3 Keto-O of D4A with Arg_239 in the substrate-binding site. This interaction causes a remarkable distance of 0.63 nm between D4A nitrogen and Fe in heme, which reduces its 17,20 lyase selectivity. The D4A keto moiety presents an immense number of H-bond with surrounding solvent molecules compared with the Abi hydroxyl group. As a result, D4A develops a weaker H-bond network with the enzyme. Otherwise, the heterocyclic nature of inhibitors helps for noticeable van der Waals interaction formation with CYP17A1. However, Abi stabilized position in the binding site helps more van der Waals interactions deposition than D4A. These results convinced the importance of the conserved H-bond for acquiring the proper position by the substrate or inhibitor in the binding site.
Collapse
Affiliation(s)
- Havva Mehralitabar
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - A S Ghasemi
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.
| | - Jahed Gholizadeh
- Chemistry Department, Faculty of Science, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
13
|
An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase. Commun Biol 2021; 4:55. [PMID: 33420418 PMCID: PMC7794467 DOI: 10.1038/s42003-020-01568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs.
Collapse
|
14
|
Maksymchuk OV, Kashuba VI. Altered expression of cytochrome P450 enzymes involved in metabolism of androgens and vitamin D in the prostate as a risk factor for prostate cancer. Pharmacol Rep 2020; 72:1161-1172. [PMID: 32681429 DOI: 10.1007/s43440-020-00133-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Prostate cancer is the most common malignant disease among men. The signaling pathways, regulated by the androgen and vitamin D receptors, play a key role in prostate cancer. The intracellular level of androgens and vitamin D determines not only receptor functionality, but also the efficacy of cellular processes regulated by them (cell proliferation, apoptosis, differentiation etc.). It is known that several androgen-metabolizing P450s (CYP3A4/5/43 and CYP2B6) and P450 enzymes (CYP2R1, CYP27A1, CYP27B1, CYP24A1, CYP3A4, CYP2J2), which are necessary for vitamin D metabolism, are expressed in the prostate. It was shown that alterations in an expression pattern of the certain cytochrome P450s might lead to the development of castration-resistant cancer (CYP3A4, CYP2J2, CYP24A1), and to chemo-resistance (CYP3A4, CYP3A5, CYP2B6) and early mortality (CYP2B6, CYP27A1, CYP24A1). Moreover, steroidogenic CYPs (CYP17A1, CYP11A1) are not expressed in normal prostate tissue. Alterations in their expression levels in steroidogenic tissues are closely associated with carcinogenesis, and, most importantly, with the development of aggressive forms of prostate cancer. Hence, it is important, to study how expression of CYPs in the prostate might be regulated, to understand the mechanisms of disease development and to improve the effectiveness of therapy. Several CYPs (CYP3A43, CYP2B6, CYP27A1, CYP24A1) can be considered as prognostic and diagnostic markers of prostate cancer. To propose personalized treatment, individual differences in CYP expression should be taken into account.
Collapse
Affiliation(s)
- Oksana V Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150, Zabolotnogo Street, Kyiv, 03143, Ukraine.
| | - Vladimir I Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150, Zabolotnogo Street, Kyiv, 03143, Ukraine
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|
15
|
Sutanto F, Konstantinidou M, Dömling A. Covalent inhibitors: a rational approach to drug discovery. RSC Med Chem 2020; 11:876-884. [PMID: 33479682 PMCID: PMC7557570 DOI: 10.1039/d0md00154f] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
In this review we provide a brief historic overview of covalent inhibitors and summarize recent advances focusing on developments in the last decade. Applications in challenging targets and future perspectives are also discussed.
Covalent inhibitors are recognized as an important component in drug discovery and therapeutics. Since the first appearance of covalent inhibitors in the late 18th century, the field has advanced significantly and currently about 30% of the marketed drugs are covalent inhibitors. The numerous advantages of covalent inhibitors are counteracting the initial concerns regarding potential off-target toxicity. Thus, continuous research, especially for cancer targets is reported. The aim of this review is to provide a short historic overview and focus on recently developed covalent inhibitors (2011–2019), including structural aspects and examples on challenging targets.
Collapse
Affiliation(s)
- Fandi Sutanto
- Department of Pharmacy , Group of Drug Design , University of Groningen , A. Deusinglaan 1 , 9713 AV , Groningen , The Netherlands . ; http://www.drugdesign.nl
| | - Markella Konstantinidou
- Department of Pharmacy , Group of Drug Design , University of Groningen , A. Deusinglaan 1 , 9713 AV , Groningen , The Netherlands . ; http://www.drugdesign.nl
| | - Alexander Dömling
- Department of Pharmacy , Group of Drug Design , University of Groningen , A. Deusinglaan 1 , 9713 AV , Groningen , The Netherlands . ; http://www.drugdesign.nl
| |
Collapse
|
16
|
KAVAKCIOĞLU YARDIMCI B. Imidazole Antifungals: A Review of Their Action Mechanisms on Cancerous Cells. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.714310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Parween S, Fernández-Cancio M, Benito-Sanz S, Camats N, Rojas Velazquez MN, López-Siguero JP, Udhane SS, Kagawa N, Flück CE, Audí L, Pandey AV. Molecular Basis of CYP19A1 Deficiency in a 46,XX Patient With R550W Mutation in POR: Expanding the PORD Phenotype. J Clin Endocrinol Metab 2020; 105:5736381. [PMID: 32060549 DOI: 10.1210/clinem/dgaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
CONTEXT Mutations in cytochrome P450 oxidoreductase (POR) cause a form of congenital adrenal hyperplasia (CAH). We report a novel R550W mutation in POR identified in a 46,XX patient with signs of aromatase deficiency. OBJECTIVE Analysis of aromatase deficiency from the R550W mutation in POR. DESIGN, SETTING, AND PATIENT Both the child and the mother had signs of virilization. Ultrasound revealed the presence of uterus and ovaries. No defects in CYP19A1 were found, but further analysis with a targeted Disorders of Sexual Development NGS panel (DSDSeq.V1, 111 genes) on a NextSeq (Illumina) platform in Madrid and Barcelona, Spain, revealed compound heterozygous mutations c.73_74delCT/p.L25FfsTer93 and c.1648C > T/p.R550W in POR. Wild-type and R550W POR were produced as recombinant proteins and tested with multiple cytochrome P450 enzymes at University Children's Hospital, Bern, Switzerland. MAIN OUTCOME MEASURE AND RESULTS POR-R550W showed 41% of the WT activity in cytochrome c and 7.7% activity for reduction of MTT. Assays of CYP19A1 showed a severe loss of activity, and CYP17A1 as well as CYP21A2 activities were also lost by more than 95%. Loss of CYP2C9, CYP2C19, and CYP3A4 activities was observed for the R550W-POR. Predicted adverse effect on aromatase activity as well as a reduction in binding of NADPH was confirmed. CONCLUSIONS Pathological effects due to POR-R550W were identified, expanding the knowledge of molecular pathways associated with aromatase deficiency. Screening of the POR gene may provide a diagnosis in CAH without defects in genes for steroid metabolizing enzymes.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mónica Fernández-Cancio
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Sara Benito-Sanz
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, CIBERER, ISCIII, Madrid, Spain
| | - Núria Camats
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Laboratorio de Genética Molecular, Departamento de Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | | | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- Faculty of Medicine, Nagoya University, Nagoya, Japan
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Laura Audí
- Growth and Development Research Unit VHIR, Hospital Vall d'Hebron, CIBERER, Autonomous University of Barcelona, Barcelona, Spain
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Parween S, DiNardo G, Baj F, Zhang C, Gilardi G, Pandey AV. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J Steroid Biochem Mol Biol 2020; 196:105507. [PMID: 31669572 DOI: 10.1016/j.jsbmb.2019.105507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Giovanna DiNardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland; Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
19
|
Porter BA, Ortiz MA, Bratslavsky G, Kotula L. Structure and Function of the Nuclear Receptor Superfamily and Current Targeted Therapies of Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121852. [PMID: 31771198 PMCID: PMC6966469 DOI: 10.3390/cancers11121852] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival, and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer, the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible to develop than others due to the ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).
Collapse
Affiliation(s)
- Baylee A. Porter
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A. Ortiz
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: ; Tel.: +1-315-464-1690
| |
Collapse
|
20
|
Rodríguez Castaño P, Parween S, Pandey AV. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int J Mol Sci 2019; 20:ijms20184606. [PMID: 31533365 PMCID: PMC6770025 DOI: 10.3390/ijms20184606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
21
|
Special Issue "Anticancer Drugs". Pharmaceuticals (Basel) 2019; 12:ph12030134. [PMID: 31527393 PMCID: PMC6789469 DOI: 10.3390/ph12030134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
The focus of this Special Issue of Pharmaceuticals is on the design, synthesis, and molecular mechanism of action of novel antitumor, drugs with a special emphasis on the relationship between the chemical structure and the biological activity of the molecules. This Special Issue also provides an understanding of the biologic and genotypic context in which targets are selected for oncology drug discovery, thus providing a rationalization for the biological activity of these drugs and guiding the design of more effective agents. In this Special Issue of Pharmaceuticals dedicated to anticancer drugs, we present a selection of preclinical research papers including both traditional chemotherapeutic agents and newer more targeted therapies and biological agents. We have included articles that report the design of small molecules with promising anticancer activity as tubulin inhibitors, vascular targeting agents, and topoisomerase targeting agents, alongside a comprehensive review of clinically successful antibody-drug conjugates used in cancer treatment.
Collapse
|
22
|
Panada JU, Faletrov YV, Frolova NS, Shkumatov VM. [Synthesis and evaluation of N-alkynylaminosteroids as potential CYP450 17A1 inhibitors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:324-330. [PMID: 31436174 DOI: 10.18097/pbmc20196504324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four isomeric dehydroepiandrosterone- and pregnenolone-based N-alkynylaminosteroids were synthesized and tested in vitro for inhibition of heterologously expressed CYP17A1. The highest inhibitory activity was observed when the optimal number of side chain atoms was met. The conjugate based on pregnenolone containing an N-propynyl moiety was found to interefere with enzymatic activity most effectively and consistently in the micromolar range.
Collapse
Affiliation(s)
- J U Panada
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - Y V Faletrov
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - N S Frolova
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - V M Shkumatov
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| |
Collapse
|
23
|
Miller WL. MECHANISMS IN ENDOCRINOLOGY: Rare defects in adrenal steroidogenesis. Eur J Endocrinol 2018; 179:R125-R141. [PMID: 29880708 DOI: 10.1530/eje-18-0279] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of genetic disorders of adrenal steroidogenesis that impair cortisol synthesis, with compensatory increases in ACTH leading to hyperplastic adrenals. The term 'CAH' is generally used to mean 'steroid 21-hydroxylase deficiency' (21OHD) as 21OHD accounts for about 95% of CAH in most populations; the incidences of the rare forms of CAH vary with ethnicity and geography. These forms of CAH are easily understood on the basis of the biochemistry of steroidogenesis. Defects in the steroidogenic acute regulatory protein, StAR, disrupt all steroidogenesis and are the second-most common form of CAH in Japan and Korea; very rare defects in the cholesterol side-chain cleavage enzyme, P450scc, are clinically indistinguishable from StAR defects. Defects in 3β-hydroxysteroid dehydrogenase, which also causes disordered sexual development, were once thought to be fairly common, but genetic analyses show that steroid measurements are generally unreliable for this disorder. Defects in 17-hydroxylase/17,20-lyase ablate synthesis of sex steroids and also cause mineralocorticoid hypertension; these are common in Brazil and in China. Isolated 17,20-lyase deficiency can be caused by rare mutations in at least three different proteins. P450 oxidoreductase (POR) is a co-factor used by 21-hydroxylase, 17-hydroxylase/17,20-lyase and aromatase; various POR defects, found in different populations, affect these enzymes differently. 11-Hydroxylase deficiency is the second-most common form of CAH in European populations but the retention of aldosterone synthesis distinguishes it from 21OHD. Aldosterone synthase deficiency is a rare salt-losing disorder. Mild, 'non-classic' defects in all of these factors have been described. Both the severe and non-classic disorders can be treated if recognized.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute of Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|