1
|
Identification of 2-(4-N,N-Dimethylaminophenyl)-5-methyl-1-phenethyl-1H-benzimidazole targeting HIV-1 CA capsid protein and inhibiting HIV-1 replication in cellulo. BMC Pharmacol Toxicol 2022; 23:43. [PMID: 35765101 PMCID: PMC9241302 DOI: 10.1186/s40360-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
The capsid (CA) subunit of the HIV-1 Gag polyprotein is involved in several steps of the viral cycle, from the assembly of new viral particles to the protection of the viral genome until it enters into the nucleus of newly infected cells. As such, it represents an interesting therapeutic target to tackle HIV infection. In this study, we screened hundreds of compounds with a low cost of synthesis for their ability to interfere with Gag assembly in vitro. Representatives of the most promising families of compounds were then tested for their ability to inhibit HIV-1 replication in cellulo. From these molecules, a hit compound from the benzimidazole family with high metabolic stability and low toxicity, 2-(4-N,N-dimethylaminophenyl)-5-methyl-1-phenethyl-1H-benzimidazole (696), appeared to block HIV-1 replication with an IC50 of 3 µM. Quantitative PCR experiments demonstrated that 696 does not block HIV-1 infection before the end of reverse transcription, and molecular docking confirmed that 696 is likely to bind at the interface between two monomers of CA and interfere with capsid oligomerization. Altogether, 696 represents a promising lead molecule for the development of a new series of HIV-1 inhibitors.
Collapse
|
2
|
Tsang NY, Li WF, Varhegyi E, Rong L, Zhang HJ. Ebola Entry Inhibitors Discovered from Maesa perlarius. Int J Mol Sci 2022; 23:ijms23052620. [PMID: 35269770 PMCID: PMC8910447 DOI: 10.3390/ijms23052620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Ebola virus disease (EVD), a disease caused by infection with Ebola virus (EBOV), is characterized by hemorrhagic fever and a high case fatality rate. With limited options for the treatment of EVD, anti-Ebola viral therapeutics need to be urgently developed. In this study, over 500 extracts of medicinal plants collected in the Lingnan region were tested against infection with Ebola-virus-pseudotyped particles (EBOVpp), leading to the discovery of Maesa perlarius as an anti-EBOV plant lead. The methanol extract (MPBE) of the stems of this plant showed an inhibitory effect against EBOVpp, with an IC50 value of 0.52 µg/mL, which was confirmed by testing the extract against infectious EBOV in a biosafety level 4 laboratory. The bioassay-guided fractionation of MPBE resulted in three proanthocyanidins (procyanidin B2 (1), procyanidin C1 (2), and epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin (3)), along with two flavan-3-ols ((+)-catechin (4) and (−)-epicatechin (5)). The IC50 values of the compounds against pseudovirion-bearing EBOV-GP ranged from 0.83 to 36.0 µM, with 1 as the most potent inhibitor. The anti-EBOV activities of five synthetic derivatives together with six commercially available analogues, including EGCG ((−)-epigallocatechin-3-O-gallate (8)), were further investigated. Molecular docking analysis and binding affinity measurement suggested the EBOV glycoprotein could be a potential molecular target for 1 and its related compounds.
Collapse
Affiliation(s)
- Nga Yi Tsang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (N.Y.T.); (W.-F.L.)
| | - Wan-Fei Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (N.Y.T.); (W.-F.L.)
| | - Elizabeth Varhegyi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, 909 South Wolcott Ave, Chicago, IL 60612, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, 909 South Wolcott Ave, Chicago, IL 60612, USA;
- Correspondence: (L.R.); (H.-J.Z.); Tel.: +1-312-3550203 (L.R.); +852-34112956 (H.-J.Z.)
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (N.Y.T.); (W.-F.L.)
- Correspondence: (L.R.); (H.-J.Z.); Tel.: +1-312-3550203 (L.R.); +852-34112956 (H.-J.Z.)
| |
Collapse
|
3
|
Long M, Toesca J, Guillon C. Review and Perspectives on the Structure-Function Relationships of the Gag Subunits of Feline Immunodeficiency Virus. Pathogens 2021; 10:pathogens10111502. [PMID: 34832657 PMCID: PMC8621984 DOI: 10.3390/pathogens10111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.
Collapse
Affiliation(s)
- Mathieu Long
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, 221 00 Scania, Sweden
| | - Johan Toesca
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Enveloped Viruses, Vectors and Immunotherapy, CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Correspondence:
| |
Collapse
|
4
|
Preclinical Studies in Anti- Trypanosomatidae Drug Development. Pharmaceuticals (Basel) 2021; 14:ph14070644. [PMID: 34358070 PMCID: PMC8308625 DOI: 10.3390/ph14070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or "Pathogen Box" (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.
Collapse
|
5
|
Long M, Cantrelle FX, Robert X, Boll E, Sierra N, Gouet P, Hanoulle X, Alvarez GI, Guillon C. Identification of a Potential Inhibitor of the FIV p24 Capsid Protein and Characterization of Its Binding Site. Biochemistry 2021; 60:1896-1908. [PMID: 34096272 DOI: 10.1021/acs.biochem.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feline immunodeficiency virus (FIV) is a veterinary infective agent for which there is currently no efficient drug available. Drugs targeting the lentivirus capsid are currently under development for the treatment of human immunodeficiency virus 1 (HIV-1). Here we describe a lead compound that interacts with the FIV capsid. This compound, 696, modulates the in vitro assembly of and stabilizes the assembled capsid protein. To decipher the mechanism of binding of this compound to the protein, we performed the first nuclear magnetic resonance (NMR) assignment of the FIV p24 capsid protein. Experimental NMR chemical shift perturbations (CSPs) observed after the addition of 696 enabled the characterization of a specific binding site for 696 on p24. This site was further analyzed by molecular modeling of the protein:compound interaction, demonstrating a strong similarity with the binding sites of existing drugs targeting the HIV-1 capsid protein. Taken together, we characterized a promising capsid-interacting compound with a low cost of synthesis, for which derivatives could lead to the development of efficient treatments for FIV infection. More generally, our strategy combining the NMR assignment of FIV p24 with NMR CSPs and molecular modeling will be useful for the analysis of future compounds targeting p24 in the quest to identify an efficient treatment for FIV.
Collapse
Affiliation(s)
- Mathieu Long
- UMR 5086, Molecular Microbiology and Structural Biochemistry, CNRS/Université Lyon 1, 69367 Lyon, France
| | - François-Xavier Cantrelle
- CNRS, ERL9002, Integrative Structural Biology, F-59000 Lille, France.,Univ. Lille, INSERM, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167-RID-AGE-Risk factors and molecular determinants of aging-related, F-59000 Lille, France
| | - Xavier Robert
- UMR 5086, Molecular Microbiology and Structural Biochemistry, CNRS/Université Lyon 1, 69367 Lyon, France
| | - Emmanuelle Boll
- CNRS, ERL9002, Integrative Structural Biology, F-59000 Lille, France.,Univ. Lille, INSERM, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167-RID-AGE-Risk factors and molecular determinants of aging-related, F-59000 Lille, France
| | - Natalia Sierra
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, 60000 Paysandú, Uruguay
| | - Patrice Gouet
- UMR 5086, Molecular Microbiology and Structural Biochemistry, CNRS/Université Lyon 1, 69367 Lyon, France
| | - Xavier Hanoulle
- CNRS, ERL9002, Integrative Structural Biology, F-59000 Lille, France.,Univ. Lille, INSERM, CHU Lille University Hospital, Institut Pasteur de Lille, UMR1167-RID-AGE-Risk factors and molecular determinants of aging-related, F-59000 Lille, France
| | - Guzmán I Alvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, 60000 Paysandú, Uruguay
| | - Christophe Guillon
- UMR 5086, Molecular Microbiology and Structural Biochemistry, CNRS/Université Lyon 1, 69367 Lyon, France
| |
Collapse
|
6
|
Novel and selective inactivators of Triosephosphate isomerase with anti-trematode activity. Sci Rep 2020; 10:2587. [PMID: 32054976 PMCID: PMC7018972 DOI: 10.1038/s41598-020-59460-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Trematode infections such as schistosomiasis and fascioliasis cause significant morbidity in an estimated 250 million people worldwide and the associated agricultural losses are estimated at more than US$ 6 billion per year. Current chemotherapy is limited. Triosephosphate isomerase (TIM), an enzyme of the glycolytic pathway, has emerged as a useful drug target in many parasites, including Fasciola hepatica TIM (FhTIM). We identified 21 novel compounds that selectively inhibit this enzyme. Using microscale thermophoresis we explored the interaction between target and compounds and identified a potent interaction between the sulfonyl-1,2,4-thiadiazole (compound 187) and FhTIM, which showed an IC50 of 5 µM and a Kd of 66 nM. In only 4 hours, this compound killed the juvenile form of F. hepatica with an IC50 of 3 µM, better than the reference drug triclabendazole (TCZ). Interestingly, we discovered in vitro inhibition of FhTIM by TCZ, with an IC50 of 7 µM suggesting a previously uncharacterized role of FhTIM in the mechanism of action of this drug. Compound 187 was also active against various developmental stages of Schistosoma mansoni. The low toxicity in vitro in different cell types and lack of acute toxicity in mice was demonstrated for this compound, as was demonstrated the efficacy of 187in vivo in F. hepatica infected mice. Finally, we obtained the first crystal structure of FhTIM at 1.9 Å resolution which allows us using docking to suggest a mechanism of interaction between compound 187 and TIM. In conclusion, we describe a promising drug candidate to control neglected trematode infections in human and animal health.
Collapse
|
7
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|