1
|
Mamaligka AM, Dodou K. Studies on Loading Salicylic Acid in Xerogel Films of Crosslinked Hyaluronic Acid. Gels 2024; 10:54. [PMID: 38247777 PMCID: PMC10815332 DOI: 10.3390/gels10010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
During the last decades, salicylic acid (SA) and hyaluronic acid (HA) have been studied for a wide range of cosmetic and pharmaceutical applications. The current study investigated the drug loading potential of SA in HA-based crosslinked hydrogel films using a post-loading (osmosis) method of the unmedicated xerogels from saturated aqueous solutions of salicylic acid over a range of pH values. The films were characterized with Fourier-transform infra-red spectroscopy (FT-IR) and ultraviolet-visible (UV-Vis) spectrophotometry in order to elucidate the drug loading profile and the films' integrity during the loading process. Additional studies on their weight loss (%), gel fraction (%), thickness increase (%) and swelling (%) were performed. Overall, the studies showed significant film disintegration at highly acidic and basic solutions. No drug loading occurred at neutral and basic pH, possibly due to the anionic repulsion between SA and HA, whereas at, pH 2.1, the drug loading was promising and could be detected via UV-Vis analysis of the medicated solutions, with the SA concentration in the xerogel films at 28% w/w.
Collapse
Affiliation(s)
| | - Kalliopi Dodou
- School of Health and Life Sciences, University of Teesside, Middlesborough TS13BX, UK
| |
Collapse
|
2
|
Wang J, Ottosson J, Tentarelli S. Development of hydrolytic stability screening methods for early drug discovery with high differentiation and predictive power. J Pharm Biomed Anal 2023; 233:115478. [PMID: 37245329 DOI: 10.1016/j.jpba.2023.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
In early drug discovery, hydrolytic chemical stability is routinely assessed to ensure future developability of quality compounds and stability in in vitro test environments. When conducting high-throughput hydrolytic stability analyses as part of the compound risk assessment, aggressive conditions are typically applied to allow for faster screening. However, it can be challenging to extrapolate the real stability risk and to rank compounds due to over-estimating risk based on aggressive conditions and the narrow discriminative window. In this study, critical assay parameters including temperature, concentration, and detection technique were systematically assessed using selected model compounds, and the impact and interplay of these parameters on predictive power and prediction quality were evaluated. Improved data quality was achieved using high sample concentration and reduced temperature, combined with ultraviolet (UV) detection, while mass spectrometry (MS) detection was found to be a useful complementary detection technique. Therefore, a highly discriminative stability protocol with optimized assay parameters and experimental data quality is proposed. The optimized assay can provide early guidance on the potential stability risk of a drug molecule as well as enable more confident decision-making in compound design, selection, and development.
Collapse
Affiliation(s)
- Jianyan Wang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA.
| | - Jenny Ottosson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
3
|
Prusskii AI, Aleshina LA, Lyukhanova IV, Sidorova OV, Budaeva VV, Sakovich GV. Model of the Atomic Molecular Structure of Miscanthus Sacchariflonis Cellulose Nitrates. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Nourizadeh F, Mokhtarpour M, Valizadeh Ziaee Z, Khorsandi M, Sadrmousavi A, Shekaari H. Solubility enhancement and intermolecular interactions of salicylic acid in aqueous solutions of choline chloride based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Vitrac O, Nguyen PM, Hayert M. In Silico Prediction of Food Properties: A Multiscale Perspective. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.786879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several open software packages have popularized modeling and simulation strategies at the food product scale. Food processing and key digestion steps can be described in 3D using the principles of continuum mechanics. However, compared to other branches of engineering, the necessary transport, mechanical, chemical, and thermodynamic properties have been insufficiently tabulated and documented. Natural variability, accented by food evolution during processing and deconstruction, requires considering composition and structure-dependent properties. This review presents practical approaches where the premises for modeling and simulation start at a so-called “microscopic” scale where constituents or phase properties are known. The concept of microscopic or ground scale is shown to be very flexible from atoms to cellular structures. Zooming in on spatial details tends to increase the overall cost of simulations and the integration over food regions or time scales. The independence of scales facilitates the reuse of calculations and makes multiscale modeling capable of meeting food manufacturing needs. On one hand, new image-modeling strategies without equations or meshes are emerging. On the other hand, complex notions such as compositional effects, multiphase organization, and non-equilibrium thermodynamics are naturally incorporated in models without linearization or simplifications. Multiscale method’s applicability to hierarchically predict food properties is discussed with comprehensive examples relevant to food science, engineering and packaging. Entropy-driven properties such as transport and sorption are emphasized to illustrate how microscopic details bring new degrees of freedom to explore food-specific concepts such as safety, bioavailability, shelf-life and food formulation. Routes for performing spatial and temporal homogenization with and without chemical details are developed. Creating a community sharing computational codes, force fields, and generic food structures is the next step and should be encouraged. This paper provides a framework for the transfer of results from other fields and the development of methods specific to the food domain.
Collapse
|
6
|
Sa’adon S, Ansari MNM, Razak SIA, Yusof AHM, Faudzi AAM, Sagadevan S, Nayan NHM, Anand JS, Amin KAM. Electrospun Nanofiber and Cryogel of Polyvinyl Alcohol Transdermal Patch Containing Diclofenac Sodium: Preparation, Characterization and In Vitro Release Studies. Pharmaceutics 2021; 13:1900. [PMID: 34834315 PMCID: PMC8625409 DOI: 10.3390/pharmaceutics13111900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Transdermal drug delivery systems (TDDS) have drawn more interest from pharmaceutical scientists because they could provide steady blood levels and prevent the first-pass metabolism over a longer period. Polyvinyl alcohol (PVA) has been widely used in this application due to its biocompatibility, non-toxicity, nanofiber and hydrogel-forming ability. Despite those benefits, their morphology would easily be destroyed by continuous water absorption and contribute to burst drug release due to its hydrophilicity. The aim of this study was to prepare the diclofenac sodium (DS)-medicated dual layer PVA patch using a combination of electrospinning and cryogelation (freeze-thaw) methods to improve the physicochemical properties and drug compatibility and investigate the release of the DS-medicated dual layer PVA patch. Morphological observations using scanning electron microscopy (SEM) verified the polymer-polymer interaction between both layers, whereas Fourier transform infrared (FTIR) spectroscopy has demonstrated the compatibility of DS in PVA matrix up to 2% w/v of PVA volume. The DS loads were found amorphously distributed efficaciously in PVA matrix as no visible spectra of DS-PVA interaction were detected. The DS-medicated dual layer PVA patch with a thicker nanofiber layer (3-milliliter running volume), three freeze-thaw cycles and 2% DS loading labeled as 2%DLB3C show the lowest swelling capacity (18.47%). The in vitro assessment using Franz diffusion cells showed that the 2%DLB3C indicates a better sustained release of DS, with 53.26% of the DS being released after 12 h. The 2%DLB3C owned a flux (Jss) of 0.256 mg/cm2/h and a permeability coefficient (Kp) value of 0.020 cm/h. Thus, the results demonstrate that DS-medicated dual layer PVA patches prepared via a combination of electrospinning and cryogelation are capable of releasing drugs for up to 24 h and can serve as a drug reservoir in the skin, thereby extending the pharmacologic effects of DS.
Collapse
Affiliation(s)
- Shafizah Sa’adon
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
| | | | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
| | - Abdul Halim Mohd Yusof
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nadirul Hasraf Mat Nayan
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Joseph Sahaya Anand
- Sustainable and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Malacca 76100, Malacca, Malaysia;
| | - Khairul Anuar Mat Amin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
7
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
8
|
Xu Z, He Z, Quan X, Sun D, Miao Z, Yu H, Yang S, Chen Z, Zeng J, Zhou J. Molecular simulations of charged complex fluids: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Li BY, Li YC, Lu ZY. The important role of cosolvent in the amphiphilic diblock copolymer self-assembly process. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 DOI: 10.3389/fpls.2019.00423.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
11
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 PMCID: PMC6477076 DOI: 10.3389/fpls.2019.00423] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|