1
|
Julian W, Sergeeva O, Cao W, Wu C, Erokwu B, Flask C, Zhang L, Wang X, Basilion J, Yang S, Lee Z. Searching for Protein Off-Targets of Prostate-Specific Membrane Antigen-Targeting Radioligands in the Salivary Glands. Cancer Biother Radiopharm 2024. [PMID: 39268679 DOI: 10.1089/cbr.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Background: Prostate specific membrane antigen (PSMA)-targeted radioligand therapies represent a highly effective treatment for metastatic prostate cancer. However, high and sustain uptake of PSMA-ligands in the salivary glands led to dose limiting dry mouth (xerostomia), especially with α-emitters. The expression of PSMA and histologic analysis couldn't directly explain the toxicity, suggesting a potential off-target mediator for uptake. In this study, we set out to search for possible off-target non-PSMA protein(s) in the salivary glands. Methods: A machine-learning based quantitative structure activity relationship (QSAR) model was built for seeking the possible off-target(s). The resulting target candidates from the model prediction were subjected to further analysis for salivary protein expression and structural homology at key regions required for PSMA-ligand binding. Furthermore, cellular binding assays were performed utilizing multiple cell lines with high expression of the candidate proteins and low expression of PSMA. Finally, PSMA knockout (PSMA-/-) mice were scanned by small animal PET/MR using [68Ga]Ga-PSMA-11 for in-vivo validation. Results: The screening of the trained QSAR model did not yield a solid off-target protein, which was corroborated in part by cellular binding assays. Imaging using PSMA-/- mice further demonstrated markedly reduced PSMA-radioligand uptake in the salivary glands. Conclusion: Uptake of the PSMA-targeted radioligands in the salivary glands remains primarily PSMA-mediated. Further investigations are needed to illustrate a seemingly different process of uptake and retention in the salivary glands than that in prostate cancer.
Collapse
Affiliation(s)
- William Julian
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga Sergeeva
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Cao
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chunying Wu
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bernadette Erokwu
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris Flask
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lifang Zhang
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xinning Wang
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - James Basilion
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sichun Yang
- Nutrition Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhenghong Lee
- Radiology Department, Case Western Reserve University, Cleveland, Ohio, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Muniz M, Loprinzi CL, Orme JJ, Koch RM, Mahmoud AM, Kase AM, Riaz IB, Andrews JR, Thorpe MP, Johnson GB, Kendi AT, Kwon ED, Nauseef JT, Morgans AK, Sartor O, Childs DS. Salivary toxicity from PSMA-targeted radiopharmaceuticals: What we have learned and where we are going. Cancer Treat Rev 2024; 127:102748. [PMID: 38703593 PMCID: PMC11160931 DOI: 10.1016/j.ctrv.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Clinical trials of prostate-specific membrane antigen (PSMA) targeted radiopharmaceuticals have shown encouraging results. Some agents, like lutetium-177 [177Lu]Lu-PSMA-617 ([177Lu]Lu-PSMA-617), are already approved for late line treatment of metastatic castration-resistant prostate cancer (mCRPC). Projections are for continued growth of this treatment modality; [177Lu]Lu-PSMA-617 is being studied both in earlier stages of disease and in combination with other anti-cancer therapies. Further, the drug development pipeline is deep with variations of PSMA-targeting radionuclides, including higher energy alpha particles conjugated to PSMA-honing vectors. It is safe to assume that an increasing number of patients will be exposed to PSMA-targeted radiopharmaceuticals during the course of their cancer treatment. In this setting, it is important to better understand and mitigate the most commonly encountered toxicities. One particularly vexing side effect is xerostomia. In this review, we discuss the scope of the problem, inventories to better characterize and monitor this troublesome side effect, and approaches to preserve salivary function and effectively palliate symptoms. This article aims to serve as a useful reference for prescribers of PSMA-targeted radiopharmaceuticals, while also commenting on areas of missing data and opportunities for future research.
Collapse
Affiliation(s)
- Miguel Muniz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | | | - Jacob J Orme
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| | - Regina M Koch
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, US.
| | | | - Adam M Kase
- Department of Medical Oncology, Mayo Clinic, Jacksonville FL, US.
| | - Irbaz B Riaz
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, US.
| | - Jack R Andrews
- Department of Urology, Mayo Clinic Arizona, Phoenix, AZ, US.
| | - Matthew P Thorpe
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Geoffrey B Johnson
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US; Department of Immunology, Mayo Clinic, Rochester, MN, US.
| | - Ayse T Kendi
- Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, US.
| | - Jones T Nauseef
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, US.
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, US.
| | - Oliver Sartor
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US; Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, US.
| | - Daniel S Childs
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, US.
| |
Collapse
|
3
|
Müller M, Lucaroni L, Favalli N, Bassi G, Neri D, Cazzamalli S, Oehler S. Discovery of Glutamate Carboxypeptidase III Ligands to Compete the Uptake of [ 177Lu]Lu-PSMA-617 in Healthy Organs. J Med Chem 2024; 67:8247-8260. [PMID: 38716576 DOI: 10.1021/acs.jmedchem.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.
Collapse
Affiliation(s)
| | | | | | | | - Dario Neri
- Philochem AG, Otelfingen 8112, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich 8093, Switzerland
- Philogen S.p.A., Siena 53100, Italy
| | | | | |
Collapse
|
4
|
Sample CM, Uribe C, Rahmim A, Bénard F, Wu J, Clark H. Heterogeneous PSMA ligand uptake inside parotid glands. Phys Med 2024; 121:103366. [PMID: 38657425 DOI: 10.1016/j.ejmp.2024.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The purpose of this investigation is to quantify the spatial heterogeneity of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) uptake within parotid glands. We aim to quantify patterns in well-defined regions to facilitate further investigations. Furthermore, we investigate whether uptake is correlated with computed tomography (CT) texture features. METHODS Parotid glands from [18F]DCFPyL PSMA PET/CT images of 30 prostate cancer patients were analyzed. Uptake patterns were assessed with various segmentation schemes. Spearman's rank correlation coefficient was calculated between PSMA PET uptake and feature values of a Grey Level Run Length Matrix using a long and short run length emphasis (GLRLML and GLRLMS) in subregions of the parotid gland. RESULTS PSMA PET uptake was significantly higher (p < 0.001) in lateral/posterior regions of the glands than anterior/medial regions. Maximum uptake was found in the lateral half of parotid glands in 50 out of 60 glands. The difference in SUVmean between parotid halves is greatest when parotids are divided by a plane separating the anterior/medial and posterior/lateral halves symmetrically (out of 120 bisections tested). PSMA PET uptake was significantly correlated with CT GLRLML (p < 0.001), and anti-correlated with CT GLRLMS (p < 0.001). CONCLUSION Uptake of PSMA PET is heterogeneous within parotid glands, with uptake biased towards lateral/posterior regions. Uptake within parotid glands was strongly correlated with CT texture feature maps.
Collapse
Affiliation(s)
- Caleb M Sample
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, Canada; Department of Medical Physics, BC Cancer, Surrey, BC, Canada.
| | - Carlos Uribe
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC , Canada; Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, CA, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC , Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, CA, Canada
| | - François Bénard
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC , Canada; Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jonn Wu
- Department of Radiation Oncology, BC Cancer, Vancouver, BC, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haley Clark
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, Canada; Department of Medical Physics, BC Cancer, Surrey, BC, Canada; Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Taş H, Bakos G, Bauder-Wüst U, Schäfer M, Remde Y, Roscher M, Benešová-Schäfer M. Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake? Pharmaceuticals (Basel) 2024; 17:513. [PMID: 38675472 PMCID: PMC11053447 DOI: 10.3390/ph17040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities.
Collapse
Affiliation(s)
- Harun Taş
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Gábor Bakos
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Martin Schäfer
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Yvonne Remde
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Mareike Roscher
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Martina Benešová-Schäfer
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| |
Collapse
|
6
|
Böhnke N, Indrevoll B, Hammer S, Papple A, Kristian A, Briem H, Celik A, Mumberg D, Cuthbertson A, Zitzmann-Kolbe S. Mono- and multimeric PSMA-targeting small molecule-thorium-227 conjugates for optimized efficacy and biodistribution in preclinical models. Eur J Nucl Med Mol Imaging 2024; 51:669-680. [PMID: 37882848 PMCID: PMC10796422 DOI: 10.1007/s00259-023-06474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE PSMA (prostate-specific membrane antigen) is highly expressed on prostate cancer (PrCa) cells and extensively used as a homing target for PrCa treatment. Most prominently, PSMA-targeting conjugate PSMA-617, carrying a DOTA chelator and labeled with therapeutic radionuclides like beta-emitting lutetium-177 or alpha-emitting actinium-225, has shown clinical activity in PrCa patients. We sought to develop PSMA-targeting small molecule (SMOL) conjugates that show high uptake in PSMA-expressing tumors and fast clearance, and can easily be labeled with the alpha emitter thorium-227 (half-life 18.7 days). METHODS A novel linker motif with improved competition against 3H-PSMA-617 on PSMA-expressing LNCaP cells was identified. A 2,3-hydroxypyridinone chelator modified with carboxyl groups (carboxy-HOPO) with increased hydrophilicity and robust labeling with thorium-227 was developed and allowed the synthesis of mono-, di-, tri-, and tetrameric conjugates. The resulting monomeric and multimeric PSMA SMOL-TTCs (targeted thorium conjugate) were evaluated for cellular binding, internalization, and antiproliferative activity. The in vivo antitumor efficacy of the PSMA SMOL-TTCs was determined in ST1273 and KUCaP-1 PrCa models in mice, and their biodistribution was assessed in cynomolgus monkeys, minipigs, and mice. RESULTS The monomeric and multimeric PSMA SMOL conjugates were readily labeled with thorium-227 at room temperature and possessed high stability and good binding, internalization, and antiproliferative activity in vitro. In vivo, the monomeric, dimeric, and trimeric PSMA SMOL-TTCs showed fast clearance, potent antitumor efficacy, and high uptake and retention in prostate tumors in mice. No major uptake or retention in other organs was observed beyond kidneys. Low uptake of free thorium-227 into bone confirmed high complex stability in vivo. Salivary gland uptake remained inconclusive as mini pigs were devalidated as a relevant model and imaging controls failed in cynomolgus monkeys. CONCLUSION Monomeric and multimeric PSMA SMOL-TTCs show high tumor uptake and fast clearance in preclinical models and warrant further therapeutic exploration.
Collapse
Affiliation(s)
- Niels Böhnke
- Pharmaceuticals, Bayer AG, 13342, Berlin, Germany
| | | | | | | | | | - Hans Briem
- Pharmaceuticals, Bayer AG, 13342, Berlin, Germany
| | - Arif Celik
- Pharmaceuticals, Bayer AG, 13342, Berlin, Germany
| | - Dominik Mumberg
- Pharmaceuticals, Bayer AG, 13342, Berlin, Germany
- Adcendo ApS, Copenhagen, Denmark
| | | | | |
Collapse
|
7
|
Unterrainer LM, Calais J, Bander NH. Prostate-Specific Membrane Antigen: Gateway to Management of Advanced Prostate Cancer. Annu Rev Med 2024; 75:49-66. [PMID: 38285513 DOI: 10.1146/annurev-med-081522-031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.
Collapse
Affiliation(s)
- Lena M Unterrainer
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
| | - Neil H Bander
- Department of Urology, Weill Cornell Medicine, New York, NY, USA;
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Herrmann K, Rahbar K, Eiber M, Sparks R, Baca N, Krause BJ, Lassmann M, Jentzen W, Tang J, Chicco D, Klein P, Blumenstein L, Basque JR, Kurth J. Renal and Multiorgan Safety of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer in the VISION Dosimetry Substudy. J Nucl Med 2024; 65:71-78. [PMID: 38050121 PMCID: PMC10755516 DOI: 10.2967/jnumed.123.265448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
In the VISION trial, [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) plus protocol-permitted standard of care significantly improved overall survival and radiographic progression-free survival compared with standard of care alone in patients with prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer. This VISION dosimetry substudy quantified absorbed doses of 177Lu-PSMA-617 in the kidneys and other organs. Methods: Participants were a separate cohort of 30 nonrandomized patients receiving standard of care plus 177Lu-PSMA-617 at 7.4 GBq per cycle for up to 6 cycles. Blood samples, whole-body conjugate planar image scintigraphy, and abdominal SPECT/CT images were collected. SPECT/CT images were collected at 2, 24, 48, and 168 h after administration in cycle 1 and at a single time point 48 h after administration in cycles 2-6. Outcomes were absorbed dose per unit activity per cycle and cumulative absorbed dose over all cycles. Cumulative absorbed doses were predicted by extrapolation from cycle 1, and calculation of observed values was based on measurements of cycle 1 and cycles 2-6. Safety was also assessed. Results: Mean (±SD) absorbed doses per cycle in the kidneys were 0.43 ± 0.16 Gy/GBq in cycle 1 and 0.44 ± 0.21 Gy/GBq in cycles 2-6. The observed and predicted 6-cycle cumulative absorbed doses in the kidneys were 15 ± 6 and 19 ± 7 Gy, respectively. Observed and predicted cumulative absorbed doses were similar in other at-risk organs. Safety findings were consistent with those in the VISION study; no patients experienced renal treatment-emergent adverse events of a grade higher than 3. Conclusion: The renal cumulative absorbed 177Lu-PSMA-617 dose was below the established limit. 177Lu-PSMA-617 had a good overall safety profile, and low renal radiotoxicity was not a safety concern. Cumulative absorbed doses in at-risk organs over multiple cycles can be predicted by extrapolation from cycle 1 data in patients with metastatic castration-resistant prostate cancer receiving 177Lu-PSMA-617.
Collapse
Affiliation(s)
- Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium, University Hospital Essen, Essen, Germany;
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | | | | | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Walter Jentzen
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Jun Tang
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Daniela Chicco
- Advanced Accelerator Applications, a Novartis Company, Turin, Italy
| | - Patrick Klein
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Lars Blumenstein
- Novartis Institutes for BioMedical Research, Basel, Switzerland; and
| | | | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
Feuerecker B, Gafita A, Langbein T, Tauber R, Seidl C, Bruchertseifer F, Gschwendt JE, Weber WA, D’Alessandria C, Morgenstern A, Eiber M. Comparative Analysis of Morphological and Functional Effects of 225Ac- and 177Lu-PSMA Radioligand Therapies (RLTs) on Salivary Glands. Int J Mol Sci 2023; 24:16845. [PMID: 38069166 PMCID: PMC10706561 DOI: 10.3390/ijms242316845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Most Prostate Specific Membrane Antigens (PSMAs) targeting small molecules accumulate in the salivary glands (SGs), raising concerns about SG toxicity, especially after repeated therapies or therapy with 225Ac-labeled ligands. SG toxicity is assessed clinically by the severity of patient-reported xerostomia, but this parameter can be challenging to objectively quantify. Therefore, we explored the feasibility of using SG volume as a biomarker for toxicity. In 21 patients with late-stage metastatic resistant prostate cancer (mCRPC), the PSMA volume and ligand uptake of SG were analyzed retrospectively before and after two cycles of 177Lu-PSMA (LuPSMA; cohort A) and before and after one cycle of 225Ac-PSMA-617 (AcPSMA, cohort B). Mean Volume-SG in cohort A was 59 ± 13 vs. 54 ± 16 mL (-10%, p = 0.4), and in cohort B, it was 50 ± 13 vs. 40 ± 11 mL (-20%, p = 0.007), respectively. A statistically significant decrease in the activity concentration in the SG was only observed in group B (SUVmean: 9.2 ± 2.8 vs. 5.3 ± 1.8, p < 0.0001; vs. A: SUVmean: 11.2 ± 3.3 vs. 11.1 ± 3.5, p = 0.8). SG volume and PSMA-ligand uptake are promising markers to monitor the SG toxicity after a PSMA RLT.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnersite München, 69124 Heidelberg, Germany
- Department of Radiology, University Hospital, LMU Munich, 81377 München, Germany
- Department of Radiology, School of Medicine, Technical University of Munich, 81675 München, Germany
| | - Andrei Gafita
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thomas Langbein
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
| | - Robert Tauber
- Department of Urology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 München, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
| | | | - Jürgen E. Gschwendt
- Department of Urology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 München, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnersite München, 69124 Heidelberg, Germany
| | - Calogero D’Alessandria
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre (JRC), 76344 Karlsruhe, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, 81675 München, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnersite München, 69124 Heidelberg, Germany
| |
Collapse
|
10
|
Meyer C, Stuparu A, Lueckerath K, Calais J, Czernin J, Slavik R, Dahlbom M. Tandem Isotope Therapy with 225Ac- and 177Lu-PSMA-617 in a Murine Model of Prostate Cancer. J Nucl Med 2023; 64:1772-1778. [PMID: 37797974 PMCID: PMC10626377 DOI: 10.2967/jnumed.123.265433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/17/2023] [Indexed: 10/07/2023] Open
Abstract
Radionuclide therapy targeting prostate-specific membrane antigen (PSMA) is a promising option for metastatic castration-resistant prostate cancer. Clinical experience using 177Lu or 225Ac has demonstrated encouraging treatment responses; however, responses are not durable. Dual-isotope combinations, or "tandem" approaches, may improve tolerability while retaining a high tumor dose. In this study, we directly compared α- versus β-particle treatment, as well as a combination thereof, at different stages of disease in a murine model of disseminated prostate cancer. Methods: First, to determine comparable injected activities from 177Lu- and 225Ac-PSMA-617, ex vivo biodistribution studies were performed at 5 time points after treatment of C4-2 subcutaneous tumor-bearing NSG mice. To establish a more representative model of metastatic prostate cancer, NSG mice were inoculated with luciferase-expressing C4-2 cells in the left ventricle, leading to disseminated visceral and bone lesions. At either 3 or 5 wk after inoculation, the mice were treated with equivalent tumor dose-depositing activities of 177Lu- or 225Ac-PSMA-617 alone or in combination (35 MBq of 177Lu, 40 kBq of 225Ac, or 17 MBq of 177Lu + 20 kBq 225Ac; 10/group). Disease burden was assessed by weekly bioluminescence imaging. Treatment efficacy was evaluated using whole-body tumor burden and overall survival. Results: The ex vivo biodistribution studies revealed that 35 MBq of 177Lu and 40 kBq of 225Ac yield equivalent absorbed tumor doses in a subcutaneous C4-2 model. The disease burden of mice treated at 3 wk after inoculation (microscopic disease) with 177Lu was not significantly different from that of untreated mice. However, 225Ac-PSMA-617 both as a single agent and in combination with 177Lu (17 MBq of 177Lu + 20 kBq of 225Ac) were associated with significant whole-body tumor growth retardation and survival benefit (overall survival, 8.3 wk for nontreatment, 9.4 wk for 177Lu, 15.3 wk for 225Ac alone, and 14.1 wk for tandem therapy). When treated at 5 wk after inoculation (macroscopic disease), all treatment groups showed retarded tumor growth and improved survival, with no significant differences between 225Ac alone and administration of half the 225Ac activity in tandem with 177Lu (overall survival, 7.9 wk for nontreatment, 10.3 wk for 177Lu, 14.6 wk for 225Ac alone, and 13.2 wk for tandem therapy). Conclusion: Treatment of a disseminated model of prostate cancer with simultaneous 225Ac- and 177Lu-PSMA-617 results in significantly decreased tumor growth compared with 177Lu, which was ineffective as a single agent against microscopic lesions. Mice treated later in the disease progression and bearing macroscopic, millimeter-sized lesions experienced significant tumor growth retardation and survival benefit in both monoisotopic and tandem regimens of 177Lu and 225Ac. Although the greatest benefits were observed with the single agent 225Ac, the tandem arm experienced no significant difference in disease burden or survival benefit, suggesting that the reduced activity of 225Ac was adequately compensated in the tandem arm. The superior therapeutic efficacy of 225Ac in this model suggests a preference for α-emitters alone, or possibly in combination, in the microscopic disease setting.
Collapse
Affiliation(s)
- Catherine Meyer
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Andreea Stuparu
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Katharina Lueckerath
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| | - Magnus Dahlbom
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; and
| |
Collapse
|
11
|
Zhao Y, Culman J, Cascorbi I, Nithack N, Marx M, Zuhayra M, Lützen U. PSMA-617 inhibits proliferation and potentiates the 177Lu-PSMA-617-induced death of human prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3315-3326. [PMID: 37284895 PMCID: PMC10567812 DOI: 10.1007/s00210-023-02539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The human prostate-specific membrane antigen (PSMA) is substantially up-regulated in metastatic prostate cancer (PCa) cells. PSMA can be targeted by 177Lu conjugated to PSMA-617, a high-affinity ligand for the PSMA. The binding of the radioligand, 177Lu-PSMA-617, results in its internalisation and delivery of β-radiation into the cancer cells. However, PSMA-617, a component of the final product in the synthesis of the radioligand, may also play a role in the pathophysiology of PCa cells. The present study aimed to clarify the effects of PSMA-617 (10, 50 and 100 nM) on the expression of PSMA in PSMA-positive LNCaP cells, their proliferation, 177Lu-PSMA-617-induced cell death by WST-1 and lactate dehydrogenase assays, immunohistochemistry, western blotting, immunofluorescence staining and uptake of 177Lu-PSMA-617. PSMA-617 at 100 nM concentration induced cell-growth arrest, down-regulated cyclin D1 and cyclin E1 (by 43 and 36%, respectively) and up-regulated the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (by 48%). Immunofluorescence staining demonstrated reduced content of DNA, pointing to a lower rate of cell division. PSMA-617 (up to 100 nM) did not alter the uptake of 177Lu-PSMA-617 into the LNCaP cells. Interestingly, simultaneous treatment with 177Lu-PSMA-617 and PSMA-617 for 24 and 48 h substantially potentiated the cell-death promoting effects of the radioligand. In conclusion, the combination of impeding tumour cell proliferation by PSMA-617 and its potentiation of the radiation-induced cell death brought about by 177Lu-PSMA-617 in PCa cells may considerably improve the outcome of the radiation therapy with 177Lu-PSMA-617, especially in patients with decreased radiosensitivity of PCa cells to the radioligand.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Niklas Nithack
- Central Rhine Community Hospital-Clinic for Urology and Pediatric Urology, Koblenz, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
12
|
Bassi G, Cazzamalli S, Oehler S, Lucaroni L, Georgiev T, Favalli N, Neri D. Response to: GCP III is not the "off-target" for urea-based PSMA-ligands. Eur J Nucl Med Mol Imaging 2023; 50:2947-2949. [PMID: 37341746 DOI: 10.1007/s00259-023-06302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Affiliation(s)
- Gabriele Bassi
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland.
| | - Samuele Cazzamalli
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland.
| | - Sebastian Oehler
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Laura Lucaroni
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Tony Georgiev
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Nicholas Favalli
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Dario Neri
- Small Molecule Therapeutics Department, Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland.
| |
Collapse
|
13
|
Siebinga H, Hendrikx JJMA, Huitema ADR, de Wit-van der Veen BJ. Predicting the effect of different folate doses on [ 68Ga]Ga-PSMA-11 organ and tumor uptake using physiologically based pharmacokinetic modeling. EJNMMI Res 2023; 13:60. [PMID: 37318681 DOI: 10.1186/s13550-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Folate intake might reduce [68Ga]Ga-PSMA-11 uptake in tissues due to a competitive binding to the PSMA receptor. For diagnostic imaging, this could impact decision making, while during radioligand therapy this could affect treatment efficacy. The relationship between folate dose, timing of dosing and tumor and organ uptake is not well established. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict the effect of folates on [68Ga]Ga-PSMA-11 PET/CT uptake in salivary glands, kidneys and tumors. METHODS A PBPK model was developed for [68Ga]Ga-PSMA-11 and folates (folic acid and its metabolite 5-MTHF), with compartments added that represent salivary glands and tumor. Reactions describing receptor binding, internalization and intracellular degradation were included. Model evaluation for [68Ga]Ga-PSMA-11 was performed by using patient scan data from two different studies (static and dynamic), while for folates data from the literature were used for evaluation. Simulations were performed to assess the effect of different folate doses (150 µg, 400 µg, 5 mg and 10 mg) on accumulation in salivary glands, kidney and tumor, also for patients with different tumor volumes (10, 100, 500 and 1000 mL). RESULTS Final model evaluation showed that predictions adequately described data for both [68Ga]Ga-PSMA-11 and folates. Predictions of a 5-MTFH dose of 150 µg and folic acid dose of 400 µg (in case of administration at the same time as [68Ga]Ga-PSMA-11 (t = 0)) showed no clinically relevant effect on salivary glands and kidney uptake. However, the effect of a decrease in salivary glands and kidney uptake was determined to be clinically relevant for doses of 5 mg (34% decrease for salivary glands and 32% decrease for kidney) and 10 mg (36% decrease for salivary glands and 34% decrease for kidney). Predictions showed that tumor uptake was not relevantly affected by the co-administration of folate for all different folate doses (range 150 µg-10 mg). Lastly, different tumor volumes did not impact the folate effect on [68Ga]Ga-PSMA-11 biodistribution. CONCLUSION Using a PBPK model approach, high doses of folate (5 and 10 mg) were predicted to show a decrease of [68Ga]Ga-PSMA-11 salivary glands and kidney uptake, while intake by means of folate containing food or vitamin supplements showed no relevant effects. In addition, tumor uptake was not affected by folate administration in the simulated dose ranges (150 µg-10 mg). Differences in tumor volume are not expected to impact folate effects on [68Ga]Ga-PSMA-11 organ uptake.
Collapse
Affiliation(s)
- Hinke Siebinga
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Heynickx N, Segers C, Coolkens A, Baatout S, Vermeulen K. Characterization of Non-Specific Uptake and Retention Mechanisms of [ 177Lu]Lu-PSMA-617 in the Salivary Glands. Pharmaceuticals (Basel) 2023; 16:ph16050692. [PMID: 37242475 DOI: 10.3390/ph16050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The radionuclide therapy [177Lu]Lu-PSMA-617 was recently FDA-approved for treatment of metastatic castration-resistant prostate cancer. Salivary gland toxicity is currently considered as the main dose-limiting side effect. However, its uptake and retention mechanisms in the salivary glands remain elusive. Therefore, our aim was to elucidate the uptake patterns of [177Lu]Lu-PSMA-617 in salivary gland tissue and cells by conducting cellular binding and autoradiography experiments. Briefly, A-253 and PC3-PIP cells, and mouse kidney and pig salivary gland tissue, were incubated with 5 nM [177Lu]Lu-PSMA-617 to characterize its binding. Additionally, [177Lu]Lu-PSMA-617 was co-incubated with monosodium glutamate, ionotropic or metabotropic glutamate receptor antagonists. Low, non-specific binding was observed in salivary gland cells and tissues. Monosodium glutamate was able to decrease [177Lu]Lu-PSMA-617 in PC3-PIP cells, mouse kidney and pig salivary gland tissue. Kynurenic acid (ionotropic antagonist) decreased the binding of [177Lu]Lu-PSMA-617 to 29.2 ± 20.6% and 63.4 ± 15.4%, respectively, with similar effects observed on tissues. (RS)-MCPG (metabotropic antagonist) was able to decrease the [177Lu]Lu-PSMA-617 binding on A-253 cells to 68.2 ± 16.8% and pig salivary gland tissue to 53.1 ± 36.8%. To conclude, we showed that the non-specific binding on [177Lu]Lu-PSMA-617 could be reduced by monosodium glutamate, kynurenic acid and (RS)-MCPG.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Amelie Coolkens
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Koen Vermeulen
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
15
|
Lucaroni L, Georgiev T, Prodi E, Puglioli S, Pellegrino C, Favalli N, Prati L, Manz MG, Cazzamalli S, Neri D, Oehler S, Bassi G. Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics. Eur J Nucl Med Mol Imaging 2023; 50:957-961. [PMID: 36184692 DOI: 10.1007/s00259-022-05982-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Recently, Pluvicto™ ([177Lu]Lu-PSMA-617), a small-molecule prostate-specific membrane antigen (PSMA) radioligand therapeutic, has been approved by the FDA in metastatic castration-resistant prostate cancer. Pluvicto™ and other PSMA-targeting radioligand therapeutics (RLTs) have shown side effects due to accumulation in certain healthy tissues, such as salivary glands and kidney. Until now, the molecular mechanism underlying the undesired accumulation of PSMA-targeting RLTs had not been elucidated. METHODS We compared the sequence of PSMA with the entire human proteome to identify proteins closely related to the target. We have identified glutamate carboxypeptidase III (GCPIII), N-acetylated alpha-linked acidic dipeptidase like 1 (NAALADL-1), and transferrin receptor 1 (TfR1) as extracellular targets with the highest similarity to PSMA. The affinity of compound 1 for PSMA, GCPIII, NAALADL-1, and TfR1 was measured by fluorescence polarization. The expression of the putative anti-target GCPIII was assessed by immunofluorescence on human salivary glands and kidney, using commercially available antibodies. RESULTS A fluorescent derivative of Pluvicto™ (compound 1) bound tightly to PSMA and to GCPIII in fluorescence polarization experiments, while no interaction was observed with NAALADL-1 and TfR1. Immunofluorescence analysis revealed abundant expression of GCPIII both in healthy human kidney and salivary glands. CONCLUSION We conclude that the membranous expression of GCPIII in kidney and salivary gland may be the underlying cause for unwanted accumulation of Pluvicto™ and other Glu-ureido PSMA radio pharmaceuticals in patients.
Collapse
Affiliation(s)
- Laura Lucaroni
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Tony Georgiev
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Eleonora Prodi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Sara Puglioli
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Nicholas Favalli
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Luca Prati
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Dario Neri
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Sebastian Oehler
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland.
| | - Gabriele Bassi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland.
| |
Collapse
|
16
|
Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, Neri D, Cazzamalli S. A Dimeric FAP-Targeting Small-Molecule Radioconjugate with High and Prolonged Tumor Uptake. J Nucl Med 2022; 63:1852-1858. [PMID: 35589404 PMCID: PMC9730928 DOI: 10.2967/jnumed.122.264036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Imaging procedures based on small-molecule radioconjugates targeting fibroblast activation protein (FAP) have recently emerged as a powerful tool for the diagnosis of a wide variety of tumors. However, the therapeutic potential of radiolabeled FAP-targeting agents is limited by their short residence time in neoplastic lesions. In this work, we present the development and in vivo characterization of BiOncoFAP, a new dimeric FAP-binding motif with an extended tumor residence time and favorable tumor-to-organ ratio. Methods: The binding properties of BiOncoFAP and its monovalent OncoFAP analog were assayed against recombinant human FAP. Preclinical experiments with 177Lu-OncoFAP-DOTAGA (177Lu-OncoFAP) and 177Lu-BiOncoFAP-DOTAGA (177Lu-BiOncoFAP) were performed on mice bearing FAP-positive HT-1080 tumors. Results: OncoFAP and BiOncoFAP displayed comparable subnanomolar dissociation constants toward recombinant human FAP in solution, but the bivalent BiOncoFAP bound more avidly to the target immobilized on solid supports. In a comparative biodistribution study, 177Lu-BiOncoFAP exhibited a more stable and prolonged tumor uptake than 177Lu-OncoFAP (∼20 vs. ∼4 percentage injected dose/g, respectively, at 24 h after injection). Notably, 177Lu-BiOncoFAP showed favorable tumor-to-organ ratios with low kidney uptake. Both 177Lu-OncoFAP and 177Lu-BiOncoFAP displayed potent antitumor efficacy when administered at therapeutic doses to tumor-bearing mice. Conclusion: 177Lu-BiOncoFAP is a promising candidate for radioligand therapy of cancer, with favorable in vivo tumor-to-organ ratios, a long tumor residence time, and potent anticancer efficacy.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacopo Millul
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Abdullah Elsayed
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and,Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| |
Collapse
|
17
|
van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022; 10:3020. [PMID: 36551776 PMCID: PMC9775864 DOI: 10.3390/biomedicines10123020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Prostate Cancer Network Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Rizzo A, Dall’Armellina S, Pizzuto DA, Perotti G, Zagaria L, Lanni V, Treglia G, Racca M, Annunziata S. PSMA Radioligand Uptake as a Biomarker of Neoangiogenesis in Solid Tumours: Diagnostic or Theragnostic Factor? Cancers (Basel) 2022; 14:4039. [PMID: 36011032 PMCID: PMC9406909 DOI: 10.3390/cancers14164039] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
Due to its overexpression on the surface of prostate cancer cells, prostate-specific membrane antigen (PSMA) is a relatively novel effective target for molecular imaging and radioligand therapy (RLT) in prostate cancer. Recent studies reported that PSMA is expressed in the neovasculature of various types of cancer and regulates tumour cell invasion as well as tumour angiogenesis. Several authors explored the role of diagnostic and therapeutic PSMA radioligands in various malignancies. In this narrative review, we describe the current status of the literature on PSMA radioligands' application in solid tumours other than prostate cancer to explore their potential role as diagnostic or therapeutic agents, with particular regard to the relevance of PSMA radioligand uptake as neoangiogenetic biomarker. Hence, a comprehensive review of the literature was performed to find relevant articles on the applications of PSMA radioligands in non-prostate solid tumours. Data on the general, methodological and clinical aspects of all included studies were collected. Forty full-text papers were selected for final review, 8 of which explored PSMA radioligand PET/CT performances in gliomas, 3 in salivary gland malignancies, 6 in thyroid cancer, 2 in breast cancer, 16 in renal cell carcinoma and 5 in hepatocellular carcinoma. In the included studies, PSMA radioligand PET showed promising performance in patients with non-prostate solid tumours. Further studies are needed to better define its potential role in oncological patients management, especially in those undergoing antineoangiogenic therapies, and to assess the efficacy of PSMA-RLT in this clinical context.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Sara Dall’Armellina
- Nuclear Medicine Unit, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, 10134 Turin, Italy
| | - Daniele Antonio Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Germano Perotti
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Luca Zagaria
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Valerio Lanni
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Langbein T, Kulkarni HR, Schuchardt C, Mueller D, Volk GF, Baum RP. Salivary Gland Toxicity of PSMA-Targeted Radioligand Therapy with 177Lu-PSMA and Combined 225Ac- and 177Lu-Labeled PSMA Ligands (TANDEM-PRLT) in Advanced Prostate Cancer: A Single-Center Systematic Investigation. Diagnostics (Basel) 2022; 12:diagnostics12081926. [PMID: 36010276 PMCID: PMC9406477 DOI: 10.3390/diagnostics12081926] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: PSMA-targeted radioligand therapy (PRLT) is a promising treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). However, a high uptake of the radiopharmaceutical in the salivary glands (SG) can lead to xerostomia and becomes dose-limiting for 225Ac-PSMA-617. This study investigated the sialotoxicity of 177Lu-PSMA-I&T/-617 monotherapy and co-administered 225Ac-PSMA-617 and 177Lu-PSMA-617 (Tandem-PPRLT). Methods: Three patient cohorts, that had undergone 177Lu-PSMA-I&T/-617 monotherapy or Tandem-PRLT, were retrospectively analyzed. In a short-term cohort (91 patients), a xerostomia assessment (CTCAE v.5.0), a standardized questionnaire (sXI), salivary gland scintigraphy (SGS), and SG SUVmax and the metabolic volume (MV) on 68Ga-PSMA-11-PET/CT were obtained before and after two cycles of 177Lu-PSMA-I&T/-617. In a long-term cohort, 40 patients were similarly examined. In a Tandem cohort, the same protocol was applied to 18 patients after one cycle of Tandem-PRLT. Results: Grade 1 xerostomia in the short-term follow-up was observed in 22 (24.2%) patients with a worsening of sXI from 7 to 8 at (p < 0.05). In the long-term cohort, xerostomia grades 1 to 2 occurred in 16 (40%) patients. SGS showed no significant changes, but there was a decline of the MV of all SGs. After Tandem-PRLT, 12/18 (66.7%) patients reported xerostomia grades 1 to 2, and the sXI significantly worsened from 9.5 to 14.0 (p = 0.005), with a significant reduction in the excretion fraction (EF) and MV of all SGs. Conclusion: 177Lu-PSMA-I&T/-617 causes only minor SG toxicity, while one cycle of Tandem-PRLT results in a significant SG impairment. This standardized protocol may help to objectify and quantify SG dysfunction.
Collapse
Affiliation(s)
- Thomas Langbein
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- Department of Nuclear Medicine, Technical University of Munich, Klinikum Rechts der Isar, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-8941402972; Fax: +49-8941404950
| | - Harshad R. Kulkarni
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- BAMF Health, Grand Rapids, MI 49503, USA
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
| | - Dirk Mueller
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Gerd Fabian Volk
- Department of Otorhinolaryngology, Facial-Nerve-Center Jena, Center for Rare Diseases Jena, Jena University Hospital, 07743 Jena, Germany
| | - Richard P. Baum
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| |
Collapse
|
20
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
21
|
Brada MD, Rushing EJ, Bächinger D, Zoller L, Burger IA, Hüllner MW, Moch H, Huber A, Eckhard AH, Rupp NJ. Immunohistochemical Expression Pattern of Theragnostic Targets SSTR2 and PSMA in Endolymphatic Sac Tumors: A Single Institution Case Series. Head Neck Pathol 2022; 16:1012-1018. [PMID: 35546652 PMCID: PMC9729512 DOI: 10.1007/s12105-022-01456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Endolymphatic sac tumors are rare neoplasia characterized by slow growth. However, their clinical impact should not be underestimated, considering their potential for local aggressive behavior and strong association with von Hippel-Lindau syndrome. Therefore, early detection with emerging theragnostic examinations such as 68Ga-DOTATATE-PET/CT might improve patient management and reduce morbidity. METHODS We report the clinicopathological features of seven endolymphatic sac tumors. In this cohort, we performed immunohistochemical analysis of somatostatin receptor 2A (SSTR2A) and prostate specific membrane antigen (PSMA) protein expression patterns; two targets providing rationale for novel imaging modalities such as PSMA- or SSTR-targeted PET. RESULTS The tumor cells of all cases were negative for prostate specific membrane antigen and somatostatin receptor 2A, however immunolabeling was consistently detected in intratumoral endothelial cells of endolymphatic sac tumors for PSMA (7/7 cases, 100%), and for SSTR2A (5/7 cases, 71%). CONCLUSIONS Our results show a high rate of PSMA and SSTR2A expression in the tumor vasculature of endolymphatic sac tumors. PSMA and SSTR2A can be targeted with appropriate radioligands for diagnostic and therapeutic purposes. This finding provides a rationale for prospective clinical studies to test this approach as a sensitive screening tool for patients with suspected endolymphatic sac tumors including an improved management of von Hippel-Lindau syndrome.
Collapse
Affiliation(s)
- Muriel D. Brada
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth J. Rushing
- Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Loris Zoller
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, Baden Cantonal Hospital, Baden, Switzerland ,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Martin W. Hüllner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas H. Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Niels J. Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Assessment of salivary gland function after 177Lu-PSMA radioligand therapy: Current concepts in imaging and management. Transl Oncol 2022; 21:101445. [PMID: 35523007 PMCID: PMC9079342 DOI: 10.1016/j.tranon.2022.101445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
The United States food and drug administration has recently granted approval to the targeted 177Lu-PSMA-617 therapy in prostate cancer patients. Salivary glands show high PSMA-ligand uptake and are prone to radiation damage secondary to accumulation of 177Lu-PSMA-617. Salivary gland scintigraphy is a noninvasive highly reproducible technique, useful for objective and quantitative assessment of salivary flow and function of parotid and submandibular glands and can help detect early changes post 177Lu-PSMA-617 therapy.
Prostate specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed on prostate epithelial cells and is strongly upregulated in prostate cancer. Radioligand therapy using beta-emitting Lutetium-177 (177Lu)-labeled-PSMA-617, a radiolabeled small molecule, has gained attention as a novel targeted therapy for metastatic prostate cancer, given its high affinity and long tumor retention, and rapid blood pool clearance. In March 2022, the United States Food and Drug administration has granted approval to the targeted 177Lu-PSMA-617 therapy for treatment of patients with PSMA-positive metastatic castration resistant prostate cancer, who have been previously treated with an androgen-receptor pathway inhibitor and taxane-based chemotherapy. Studies have demonstrated the adverse effects of this treatment, mainly encountered due to radiation exposure to non-target tissues. Salivary glands show high PSMA-ligand uptake and receive increased radiation dose secondary to accumulation of 177Lu-PSMA-617. This predisposes the glands to radiation-mediated toxicity. The exact mechanism, scope and severity of radiation-mediated salivary gland toxicity are not well understood, however, the strategies for its prevention and treatment are under evaluation. This review will focus on the current knowledge about salivary gland impairment post 177Lu labeled PSMA-based radioligand therapies, diagnostic methodologies, and imaging with emphasis on salivary gland scintigraphy. The preventive strategies and known treatment options would also be briefly highlighted.
Collapse
|
23
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Bu T, Zhang L, Yu F, Yao X, Wu W, Zhang P, Shi L, Zang S, Meng Q, Ni Y, Shao G, Qiu X, Ai S, Jia R, Guo H, Wang F. 177Lu-PSMA-I&T Radioligand Therapy for Treating Metastatic Castration-Resistant Prostate Cancer: A Single-Centre Study in East Asians. Front Oncol 2022; 12:835956. [PMID: 35402274 PMCID: PMC8988071 DOI: 10.3389/fonc.2022.835956] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose There is increasing evidence for convincing efficacy and safety of 177Lu-labled prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (PRLT) for metastatic castration-resistant prostate cancer (mCRPC). However, data are not available regarding the feasibility of 177Lu-labled PSMA-targeted RLT in East Asians. The present study summarized the first experience with 177Lu-PSMA-I&T therapy for mCRPC in China. Methods Forty consecutive patients with mCRPC were enrolled from December 2019 to September 2021. Eligible patients received 177Lu-PSMA-I&T RLT at intervals of 8-12 weeks. Toxicity was assessed based on standardized physicians’ reports and the Common Toxicity Criteria for Adverse Events criteria. Response to PRLT was evaluated according to the changes of prostate specific antigen (PSA) response and imaging response. Quality of life (QOL), Karnofsky performance status (KPS) and pain (visual analogue scale, VAS) were also evaluated. The impacts of baseline parameters on the therapeutic effects were explored by univariate and multivariate logistic regression analyses. Results All patients underwent a total of 86 cycles of 177Lu-PSMA-I&T (range: 1-5 cycles) with dosages of 3.70-14.43GBq per cycle, with a median of 8 months followed up. Six patients (15%) developed mild reversible xerostomia during follow-up, and 28 patients (70%) experienced grade 1-4 bone marrow dysfunction. Changes in PSA were assessed after therapy, accompanied by the partial response (PR) in 25 patients (62.5%), the stable disease (SD) in 5 patients (12.5%), and the progressive disease (PD) in 10 patients (25%), respectively. QOL, KPS (%) and VAS scores were improved significantly due to treatment (P<0.05). Overweight and elevated AST, ALP, and LDH were associated with poor outcomes. Conclusions 177Lu-PSMA-I&T achieves the favourable response and well tolerance in mCRPC, which associates with not only PSA decline but also with tumor remission including lymphadenopathy and bone metastasis. We also find that patients with overweight and high AST, ALP, and LDH should be cautious to undergo the PRLT. Large-cohort studies are warranted to confirm the initial findings and elucidate the survival benefit of the treatment.
Collapse
Affiliation(s)
- Ting Bu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lulu Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaochen Yao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pengjun Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shiming Zang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingle Meng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yudan Ni
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuefeng Qiu
- Department of Urology, Nanjing Drum Hospital, Nanjing University, Nanjing, China
| | - Shuyue Ai
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Wang, ; Ruipeng Jia, ; Hongqian Guo,
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Hospital, Nanjing University, Nanjing, China
- *Correspondence: Feng Wang, ; Ruipeng Jia, ; Hongqian Guo,
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Wang, ; Ruipeng Jia, ; Hongqian Guo,
| |
Collapse
|
25
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
26
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
27
|
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021; 225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.
Collapse
Affiliation(s)
- Stanislav A Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay Y Zyk
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
28
|
Mohan V, Bruin NM, van de Kamer JB, Sonke JJ, Vogel WV. The effect of eating on the uptake of PSMA ligands in the salivary glands. EJNMMI Res 2021; 11:95. [PMID: 34568982 PMCID: PMC8473516 DOI: 10.1186/s13550-021-00838-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
Rationale PSMA-directed therapy for metastatic prostate cancer is gaining adoption as a treatment option. However, accumulation of 177Lu/225Ac-PSMA in the salivary glands remains a problem, with risk of dose-limiting xerostomia and potentially severe effect on the quality of life. Gustatory stimulation is an approach that has commonly been used in radioactive iodine therapy to reduce accumulation in the salivary glands. However, based on theoretical differences in biodistribution, it was hypothesized that this could potentially lead to adverse increased toxicity for PSMA-ligand therapy. The primary objective of this work was to determine if gustatory stimulation by eating an assortment of sweet/fatty/acidic foods during the biodistribution phase of [18F]DCFPyl could result in a clinically relevant (> 30%) change in the uptake of the tracer in the salivary glands. Methods 10 patients who already received a whole-body [18F]DCFPyl PET/CT scan for evaluation of prostate cancer, underwent a repeat (intervention) PET/CT scan within a month of the first (control) scan. During the intervention scan, patients chose from an assortment of sweet/fatty/acidic foods, which they then chewed and swallowed for a period of time starting 1 min before tracer administration to 10 min thereafter. Data from both scans were analyzed by placing VOIs on the major salivary glands and segmenting them using relative thresholds. Results A slight increase in PSMA uptake in the parotid glands was observed on the intervention scan when compared to the baseline scan (+ 7.1% SULmean and + 9.2% SULmax, p < 0.05). No significant difference in PSMA uptake in the submandibular glands was seen. Conclusions Eating only slightly increases uptake of [18F]DCFPyl in the parotid glands. We nonetheless recommend refraining from gustatory stimulation during the administration and early biodistribution phase of radionuclide therapy with PSMA-ligands to reduce the risk of avoidable additional toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00838-y.
Collapse
Affiliation(s)
- V Mohan
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J B van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J-J Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - W V Vogel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Wollenweber T, Zisser L, Kretschmer-Chott E, Weber M, Grubmüller B, Kramer G, Shariat SF, Mitterhauser M, Schmitl S, Vraka C, Haug AR, Hacker M, Hartenbach M, Rasul S. Renal and Salivary Gland Functions after Three Cycles of PSMA-617 Therapy Every Four Weeks in Patients with Metastatic Castration-Resistant Prostate Cancer. Curr Oncol 2021; 28:3692-3704. [PMID: 34590608 PMCID: PMC8482282 DOI: 10.3390/curroncol28050315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND [177Lu]Lu-PSMA-617 radioligand therapy (PSMA-RLT) could affect kidney and salivary gland functions in metastatic castration-resistant prostate cancer (mCRPC) patients. METHODS We retrospectively analyzed clinical, renal, and salivary scintigraphy data and salivary [68Ga]Ga-PSMA-11 ligand PET scan measures such as metabolic volume and SUVmax values of 27 mCRPC men (mean age 71 ± 7 years) before and 4 weeks after receiving three cycles of PSMA-RLT every 4 weeks. Twenty-two patients additionally obtained renal and salivary scintigraphy prior to each cycle. A one-way ANOVA, post-hoc Scheffé test and Cochran's Q test were applied to assess organ toxicity. RESULTS In total, 54 PSMA PET scans, 98 kidney, and 98 salivary scintigraphy results were evaluated. There were no significant differences for the ejection fraction, peak time, and residual activity after 5 min for both parotid and submandibular glands prior to each cycle and 4 weeks after the last cycle. Similarly, no significant differences in serum creatinine and renal scintigraphy parameters were observed prior to each cycle and 4 weeks after the last treatment. Despite there being no changes in the metabolic volume of both submandibular glands, SUVmax values dropped significantly (p < 0.05). CONCLUSION Results evidenced no alterations in renal function and only minimal impairment of salivary function of mCRPC patients who acquired an intense PSMA-RLT regimen every 4 weeks.
Collapse
Affiliation(s)
- Tim Wollenweber
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Lucia Zisser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Elisabeth Kretschmer-Chott
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Bernhard Grubmüller
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (G.K.); (S.F.S.)
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (G.K.); (S.F.S.)
| | - Shahrokh F. Shariat
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria; (B.G.); (G.K.); (S.F.S.)
- Department of Urology, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Urology, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria
| | - Stefan Schmitl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Alexander R. Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Markus Hartenbach
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (L.Z.); (E.K.-C.); (M.M.); (S.S.); (C.V.); (A.R.H.); (M.H.); (M.H.)
- Correspondence: ; Tel.: +43-1-40400-58742; Fax: +43-1-40400-55520
| |
Collapse
|
30
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Yusufi N, Wurzer A, Herz M, D'Alessandria C, Feuerecker B, Weber W, Wester HJ, Nekolla S, Eiber M. Comparative Preclinical Biodistribution, Dosimetry, and Endoradiotherapy in Metastatic Castration-Resistant Prostate Cancer Using 19F/ 177Lu-rhPSMA-7.3 and 177Lu-PSMA I&T. J Nucl Med 2021; 62:1106-1111. [PMID: 33443072 DOI: 10.2967/jnumed.120.254516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Radiohybrid prostate-specific membrane antigen (rhPSMA) ligands are applicable as radiochemical twins for both diagnostic PET imaging and endoradiotherapy. On the basis of preliminary data as a diagnostic ligand, the isomer rhPSMA-7.3 is a promising candidate for potential endoradiotherapy. The aim of this preclinical evaluation was to assess the biodistribution, dosimetry, and therapeutic efficacy of 19F/177Lu-rhPSMA-7.3 in comparison to the established therapeutic agent 177Lu-PSMA I&T (imaging and therapy). Methods: The biodistribution of 19F/177Lu-rhPSMA-7.3 and 177Lu-PSMA I&T was determined in LNCaP tumor-bearing severe combined immunodeficiency (SCID) mice after sacrifice at defined time points up to 7 d (n = 5). Organs and tumors were dissected, percentage injected dose per gram (%ID/g) was determined, and dosimetry was calculated using OLINDA/EXM, version 1.0. The therapeutic efficacy of a single 30-MBq dose of 19F/177Lu-rhPSMA-7.3 (n = 7) was compared with that of 177Lu-PSMA I&T in treatment groups (n = 7) and control groups (n = 6-7) using C4-2 tumor-bearing SCID mice by evaluating tumor growth and survival over 6 wk after treatment. Results: The biodistribution of 19F/177Lu-rhPSMA-7.3 revealed fast blood clearance (0.63 %ID/g at 1 h after injection), and the highest activity uptake was in the spleen and kidneys, particularly in the first hour (33.25 %ID/g and 207.6 %ID/g, respectively, at 1 h after injection), indicating a renal excretion pathway. Compared with 177Lu-PSMA I&T, 19F/177Lu-rhPSMA-7.3 exhibited an initial (1 h) 2.6-fold higher tumor uptake in LNCaP xenografts and a longer retention (4.5 %ID/g vs. 0.9 %ID/g at 168 h). The tumor dose of 19F/177Lu-rhPSMA-7.3 was substantially higher (e.g., 7.47 vs. 1.96 µGy/MBq at 200 mm3) than that of 177Lu-PSMA I&T. In most organs, absorbed doses were higher for 177Lu-PSMA I&T. A significantly greater tumor size reduction was shown for a single dose of 19F/177Lu-rhPSMA-7.3 than for 177Lu-PSMA I&T at the end of the experiment (P = 0.0167). At the predefined termination of the experiment at 6 wk, 7 of 7 and 3 of 7 mice were still alive in the 19F/177Lu-rhPSMA-7.3 and 177Lu-PSMA I&T groups, respectively, compared with the respective control groups, with 0 of 7 and 0 of 6 mice. Conclusion: Compared with 177Lu-PSMA I&T, 19F/177Lu-rhPSMA-7.3 can be considered a suitable candidate for clinical translation because it has similar clearance kinetics and a similar radiation dose to healthy organs but superior tumor uptake and retention. Preliminary treatment experiments showed a favorable antitumor response.
Collapse
Affiliation(s)
- Nahid Yusufi
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Alexander Wurzer
- Chair for Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Calogero D'Alessandria
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Wolfgang Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Technical University of Munich, Garching, Germany
| | - Stephan Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; and
| |
Collapse
|
32
|
[ 68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14080713. [PMID: 34451810 PMCID: PMC8401928 DOI: 10.3390/ph14080713] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
For the positron emission tomography (PET) imaging of prostate cancer, radiotracers targeting the prostate-specific membrane antigen (PSMA) are nowadays used in clinical practice. Almost 10 years after its discovery, [68Ga]Ga-PSMA-11 has been approved in the United States by the Food and Drug Administration (FDA) as the first 68Ga-radiopharmaceutical for the PET imaging of PSMA-positive prostate cancer in 2020. This radiopharmaceutical combines the peptidomimetic Glu-NH-CO-NH-Lys(Ahx)-HBED-CC with the radionuclide 68Ga, enabling specific imaging of tumor cells expressing PSMA. Such a targeting approach may also be used for therapy planning as well as potentially for the evaluation of treatment response.
Collapse
|
33
|
Roy J, Warner BM, Basuli F, Zhang X, Zheng C, Goldsmith C, Phelps T, Wong K, Ton AT, Pieschl R, White ME, Swenson R, Chiorini JA, Choyke PL, Lin FI. Competitive blocking of salivary gland [ 18F]DCFPyL uptake via localized, retrograde ductal injection of non-radioactive DCFPyL: a preclinical study. EJNMMI Res 2021; 11:66. [PMID: 34287731 PMCID: PMC8295433 DOI: 10.1186/s13550-021-00803-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Background PSMA-targeted radionuclide therapy (TRT) is a promising treatment for prostate cancer (PCa), but dose-limiting xerostomia can severely limit its clinical adaptation, especially when using alpha-emitting radionuclides. With [18F]DCFPyL as a surrogate for PSMA-TRT, we report a novel method to selectively reduce salivary gland (SG) uptake of systemically administered [18F]DCFPyL by immediate prior infusion of non-radioactive standard of [18F]DCFPyL (DCFPyL) directly into the SG via retrograde cannulation. Methods A dose-finding cohort using athymic nude mice demonstrated proof of principle that SG uptake can be selectively blocked by DCFPyL administered either locally via cannulation (CAN group) or systemically (SYS group). The experiments were repeated in a validation cohort of 22RV1 tumor-bearing mice. Submandibular glands (SMG) of CAN mice were locally blocked with either saline or DCFPyL (dose range: 0.01× to 1000× molar equivalent of the radioactive [18F]DCFPyL dose). The radioactive dose of [18F]DCFPyL was administered systemically 10 min later and the mice euthanized after 1 h for biodistribution studies. Toxicity studies were done at up to 1000× dose. Results In the dose-finding cohort, the SYS group showed a dose-dependent 12–40% decrease in both the SMG T/B and the kidney (tumor surrogate). Mild blocking was observed at 0.01× , with maximal blocking reached at 1× with no additional blocking up to 1000× . In the CAN group, blocking at the 0.1× and 1× dose levels resulted in a similar 42–53% decrease, but without the corresponding decrease in kidney uptake as seen in the SYS group. Some evidence of “leakage” of DCFPyL from the salivary gland into the systemic circulation was observed. However, experiments in 22RV1 tumor-bearing mice at the 0.1× and 1× dose levels confirm that, at the appropriate blocking dose, SG uptake of [18F]DCFPyL can be selectively reduced without affecting tumor uptake and with no toxicity. Conclusion Our results suggest that direct retrograde instillation of DCFPyL into the SG could predictably and selectively decrease salivary uptake of systemically administered [18F]DCFPyL without altering tumor uptake, if given at the appropriate dose. This novel approach is easily translatable to clinical practice and has the potential to mitigate xerostomia, without compromising the therapeutic efficacy of the PSMA-TRT. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00803-9.
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, NIH, Building 10, 1A08, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, USA
| | - Changyu Zheng
- National Institute of Dental and Craniofacial Research, NIH, Building 10, 1A08, Bethesda, MD, 20892, USA
| | - Corrine Goldsmith
- National Institute of Dental and Craniofacial Research, NIH, Building 10, 1A08, Bethesda, MD, 20892, USA
| | - Tim Phelps
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA
| | - Anita T Ton
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA
| | - Rick Pieschl
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, USA
| | - John A Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Building 10, 1A08, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA
| | - Frank I Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, NCI/NIH, Building 10, Room # B3B69F, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?-An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143429. [PMID: 34298642 PMCID: PMC8307065 DOI: 10.3390/cancers13143429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor hypoxia is considered a critical factor associated with the resistance of conventional radiotherapy, where the X-ray-induced free radicals lead to DNA damage in a manner that is strongly dependent on the tissue oxygenation. The emerging PSMA-directed radioligand therapy (RLT) employs the α or β particles emitted by the radiopharmaceuticals to kill the tumor cells. In contrast to conventional therapy, the induced DNA damage is less dependent on the oxygenation status. Less attention has been paid to investigating whether tumor hypoxia will influence the efficacy of PSMA-directed RLT. We propose a histology-driven in silico model to quantitatively investigate the influence of tumor hypoxia on the treatment outcome for PSMA-directed RLT with 177Lu and 225Ac. Our finding suggests that hypoxia is a factor to be considered for the application of PSMA-directed RLT. Abstract Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.
Collapse
|
35
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
36
|
PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports. Eur J Nucl Med Mol Imaging 2021; 48:4350-4368. [PMID: 34120192 PMCID: PMC8566635 DOI: 10.1007/s00259-021-05433-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
In the past decade, a growing body of literature has reported promising results for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and therapy in prostate cancer. First clinical studies evaluating the efficacy of [177Lu]Lu-PSMA radioligand therapy (PSMA-RLT) demonstrated favorable results in prostate cancer patients. [177Lu]Lu-PSMA is generally well tolerated due to its limited side effects. While PSMA is highly overexpressed in prostate cancer cells, varying degrees of PSMA expression have been reported in other malignancies as well, particularly in the tumor-associated neovasculature. Hence, it is anticipated that PSMA-RLT could be explored for other solid cancers. Here, we describe the current knowledge of PSMA expression in other solid cancers and define a perspective towards broader clinical implementation of PSMA-RLT. This review focuses specifically on salivary gland cancer, glioblastoma, thyroid cancer, renal cell carcinoma, hepatocellular carcinoma, lung cancer, and breast cancer. An overview of the (pre)clinical data on PSMA immunohistochemistry and PSMA PET/CT imaging is provided and summarized. Furthermore, the first clinical reports of non-prostate cancer patients treated with PSMA-RLT are described.
Collapse
|
37
|
Mohan V, Bruin NM, Tesselaar MET, de Boer JP, Vegt E, Hendrikx JJMA, Al-Mamgani A, van de Kamer JB, Sonke JJ, Vogel WV. Muscarinic inhibition of salivary glands with glycopyrronium bromide does not reduce the uptake of PSMA-ligands or radioiodine. EJNMMI Res 2021; 11:25. [PMID: 33710423 PMCID: PMC7953192 DOI: 10.1186/s13550-021-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
RATIONALE Salivary glands are highly perfused and express the prostate-specific membrane antigen (PSMA) receptor as well as the sodium-iodide symporter. As a consequence, treatment with 177Lu/225Ac-PSMA for prostate cancer or 131I for thyroid cancer leads to a high radiation dose in the salivary glands, and patients can be confronted with persistent xerostomia and reduced quality of life. Salivation can be inhibited using an antimuscarinic pharmaceutical, such as glycopyrronium bromide (GPB), which may also reduce perfusion. The primary objective of this work was to determine if inhibition with GPB could provide a considerable (> 30%) reduction in the accumulation of administered 123I or 68Ga-PSMA-11 in salivary glands. METHODS Ten patients who already received a whole-body 68Ga-PSMA-11 PET/CT scan for (re)staging of prostate cancer underwent a repeat PET/CT scan with tracer administration at 90 min after intravenous injection of 0.2 mg GPB. Four patients in follow-up after thyroid cancer, who had been treated with one round of ablative 131I therapy with curative intent and had no signs of recurrence, received 123I planar scintigraphy at 4 h after tracer administration without GPB and a repeated scan at least one week later, with tracer administration at 30 min after intramuscular injection of 0.4 mg GPB. Tracer uptake in the salivary glands was quantified on PET and scintigraphy, respectively, and values with and without GPB were compared. RESULTS No significant difference in PSMA uptake in the salivary glands was seen without or with GPB (Mean SULmean parotid glands control 5.57, intervention 5.72, p = 0.50. Mean SULmean submandibular glands control 6.25, intervention 5.89, p = 0.12). Three out of 4 patients showed increased 123I uptake in the salivary glands after GPB (Mean counts per pixel control 8.60, intervention 11.46). CONCLUSION Muscarinic inhibition of salivation with GPB did not significantly reduce the uptake of PSMA-ligands or radioiodine in salivary glands, and can be dismissed as a potential strategy to reduce toxicity from radionuclide therapies.
Collapse
Affiliation(s)
- V Mohan
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - N M Bruin
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M E T Tesselaar
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J P de Boer
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Vegt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J J M A Hendrikx
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Al-Mamgani
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - J B van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - J-J Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - W V Vogel
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Garnuszek P, Karczmarczyk U, Maurin M, Sikora A, Zaborniak J, Pijarowska-Kruszyna J, Jaroń A, Wyczółkowska M, Wojdowska W, Pawlak D, Lipiński PFJ, Mikołajczak R. PSMA-D4 Radioligand for Targeted Therapy of Prostate Cancer: Synthesis, Characteristics and Preliminary Assessment of Biological Properties. Int J Mol Sci 2021; 22:2731. [PMID: 33800517 PMCID: PMC7962978 DOI: 10.3390/ijms22052731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
A new PSMA ligand (PSMA-D4) containing the Glu-CO-Lys pharmacophore connected with a new linker system (L-Trp-4-Amc) and chelator DOTA was developed for radiolabeling with therapeutic radionuclides. Herein we describe the synthesis, radiolabeling, and preliminary biological evaluation of the novel PSMA-D4 ligand. Synthesized PSMA-D4 was characterized using TOF-ESI-MS, NMR, and HPLC methods. The novel compound was subject to molecular modeling with GCP-II to compare its binding mode to analogous reference compounds. The radiolabeling efficiency of PSMA-D4 with 177Lu, 90Y, 47Sc, and 225Ac was chromatographically tested. In vitro studies were carried out in PSMA-positive LNCaP tumor cells membranes. The ex vivo tissue distribution profile of the radioligands and Cerenkov luminescence imaging (CLI) was studied in LNCaP tumor-bearing mice. PSMA-D4 was synthesized in 24% yield and purity >97%. The radio complexes were obtained with high yields (>97%) and molar activity ranging from 0.11 to 17.2 GBq mcmol-1, depending on the radionuclide. In vitro assays confirmed high specific binding and affinity for all radiocomplexes. Biodistribution and imaging studies revealed high accumulation in LNCaP tumor xenografts and rapid clearance of radiocomplexes from blood and non-target tissues. These render PSMA-D4 a promising ligand for targeted therapy of prostate cancer (PCa) metastases.
Collapse
Affiliation(s)
- Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Michał Maurin
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Arkadiusz Sikora
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | | | - Justyna Pijarowska-Kruszyna
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Antoni Jaroń
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Monika Wyczółkowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Wioletta Wojdowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Dariusz Pawlak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| | - Piotr F. J. Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Center Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland; (P.G.); (M.M.); (A.S.); (J.P.-K.); (A.J.); (M.W.); (W.W.); (D.P.); (R.M.)
| |
Collapse
|
39
|
Felber VB, Valentin MA, Wester HJ. Design of PSMA ligands with modifications at the inhibitor part: an approach to reduce the salivary gland uptake of radiolabeled PSMA inhibitors? EJNMMI Radiopharm Chem 2021; 6:10. [PMID: 33638060 PMCID: PMC7910394 DOI: 10.1186/s41181-021-00124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate whether modifications of prostate-specific membrane antigen (PSMA)-targeted radiolabeled urea-based inhibitors could reduce salivary gland uptake and thus improve tumor-to-salivary gland ratios, several analogs of a high affinity PSMA ligand were synthesized and evaluated in in vitro and in vivo studies. METHODS Binding motifs were synthesized 'on-resin' or, when not practicable, in solution. Peptide chain elongations were performed according to optimized standard protocols via solid-phase peptide synthesis. In vitro experiments were performed using PSMA+ LNCaP cells. In vivo studies as well as μSPECT/CT scans were conducted with male LNCaP tumor xenograft-bearing CB17-SCID mice. RESULTS PSMA ligands with A) modifications within the central Zn2+-binding unit, B) proinhibitor motifs and C) substituents & bioisosteres of the P1'-γ-carboxylic acid were synthesized and evaluated. Modifications within the central Zn2+-binding unit of PSMA-10 (Glu-urea-Glu) provided three compounds. Thereof, only natLu-carbamate I (natLu-3) exhibited high affinity (IC50 = 7.1 ± 0.7 nM), but low tumor uptake (5.31 ± 0.94% ID/g, 1 h p.i. and 1.20 ± 0.55% ID/g, 24 h p.i.). All proinhibitor motif-based ligands (three in total) exhibited low binding affinities (> 1 μM), no notable internalization and very low tumor uptake (< 0.50% ID/g). In addition, four compounds with P1'-ɣ-carboxylate substituents were developed and evaluated. Thereof, only tetrazole derivative natLu-11 revealed high affinity (IC50 = 16.4 ± 3.8 nM), but also this inhibitor showed low tumor uptake (3.40 ± 0.63% ID/g, 1 h p.i. and 0.68 ± 0.16% ID/g, 24 h p.i.). Salivary gland uptake in mice remained at an equally low level for all compounds (between 0.02 ± 0.00% ID/g and 0.09 ± 0.03% ID/g), wherefore apparent tumor-to-submandibular gland and tumor-to-parotid gland ratios for the modified peptides were distinctly lower (factor 8-45) than for [177Lu]Lu-PSMA-10 at 24 h p.i. CONCLUSIONS The investigated compounds could not compete with the in vivo characteristics of the EuE-based PSMA inhibitor [177Lu]Lu-PSMA-10. Although two derivatives (3 and 11) were found to exhibit high affinities towards LNCaP cells, tumor uptake at 24 h p.i. was considerably low, while uptake in salivary glands remained unaffected. Optimization of the established animal model should be envisaged to enable a clear identification of PSMA-targeting radioligands with improved tumor-to-salivary gland ratios in future studies.
Collapse
Affiliation(s)
- Veronika Barbara Felber
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany.
| | - Manuel Amando Valentin
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany
| | - Hans-Jürgen Wester
- Technical University of Munich, Chair of Pharmaceutical Radiochemistry, Walther-Meißner-Str. 3, 85748, Garching, Germany
| |
Collapse
|
40
|
Antibody-Based Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Roy J, Warner BM, Basuli F, Zhang X, Wong K, Pranzatelli T, Ton AT, Chiorini JA, Choyke PL, Lin FI, Jagoda EM. Comparison of Prostate-Specific Membrane Antigen Expression Levels in Human Salivary Glands to Non-Human Primates and Rodents. Cancer Biother Radiopharm 2020; 35:284-291. [PMID: 32074455 DOI: 10.1089/cbr.2019.3079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Prostate-specific membrane antigen (PSMA) has emerged as a promising target for developing radionuclide therapy (RNT) in prostate cancer; however, accumulation of PSMA-RNT in salivary glands can result in irreversible xerostomia. Methods to prevent PSMA-RNT-related xerostomia could be clinically useful; however, little is known about PSMA expression in salivary glands of preclinical animal models. Using [18F]DCFPyL autoradiography/biodistribution, PSMA expression levels were determined in salivary glands of various preclinical monkey and rodent species and compared with humans. Methods: Binding affinities (Kd) and PSMA levels (Bmax) were determined by in vitro [18F]DCFPyL autoradiography studies. In vivo rodent tissue uptakes (%ID/g) were determined from [18F]DCFPyL biodistributions. Results: [18F]DCFPyL exhibited low nanomolar Kd for submandibular gland (SMG) PSMA across all the species. PSMA levels in human SMG (Bmax = 60.91 nM) were approximately two-fold lower compared with baboon SMG but were two- to three-fold higher than SMG PSMA levels of cynomolgus and rhesus. Rodents had the lowest SMG PSMA levels, with the mouse being 10-fold higher than the rat. In vivo rodent biodistribution studies confirmed these results. Conclusions: SMG of monkeys exhibited comparable PSMA expression to human SMG whereas rodents were lower. However, the results suggest that mice are relatively a better small animal preclinical model than rats for PSMA salivary gland studies.
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Surgery, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Karen Wong
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Pranzatelli
- National Institute of Dental and Craniofacial Surgery, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Chiorini
- National Institute of Dental and Craniofacial Surgery, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Abstract
Prostate-specific membrane antigen (PSMA)-targeting radio-ligand therapy with beta-emitting 177Lutetium has already been investigated in several early phase dosimetry studies, demonstrated promising results in phase-2, and recently the first phase-3 trial finished recruitment. In contrast, PSMA-targeting alpha-particle therapy (TAT) has only been evaluated in few preclinical experiments, preliminary dosimetry attempts and some retrospective observational studies, yet. First clinical experience with 225Ac-PSMA-617 demonstrates promising antitumor activity with a 63%-70% PSA>50%-response rate, 10-15 months duration of response and complete remissions in approximately ten percent of patients, some of them with enduring relapse-free survival. Nevertheless, without comparative trials there is no prove whether, applied in identical clinical situations, 225Ac-PSMA-617 is really more efficiently than 177Lu-PSMA-617 or vice versa. However, there is some good rationale, that PSMA-TAT might have advantages in particular clinical indications. This includes patients with diffuse type red-marrow infiltration by reducing off-target radiation to surrounding cells; ablation of micrometastases after favorable response to other previous therapy or someday in early stage disease. Also treatment escalation of patients, either with poor response to 177Lu-PSMA or harboring adverse prognostic biomarkers, appears promising. In preclinical research, alpha-radiation demonstrated stronger induction of abscopal effects than beta-radiation; favoring its usage as a combination partner with immunotherapies. So, further evaluation of PSMA-TAT is definitely warranted. Recently, de-escalated treatment protocols and application of 225Ac/177Lu-PSMA "cocktail"-regimens improved the tolerability of 225Ac-PSMA-617 TAT, reducing the risk for development dry-mouth syndrome. This opens new avenues for future application in earlier stage disease.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | |
Collapse
|
43
|
Potential Applications of 68Ga-PSMA-11 PET/CT in the Evaluation of Salivary Gland Uptake Function: Preliminary Observations and Comparison with 99mTcO 4 - Salivary Gland Scintigraphy. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:1097516. [PMID: 32410918 PMCID: PMC7201830 DOI: 10.1155/2020/1097516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Purpose To preliminarily evaluate the feasibility and potential of using 68Ga-PSMA-11 PET/CT in evaluating the function of salivary glands and lacrimal glands in comparison with 99mTc-pertechnetate (99mTcO4−) salivary gland scintigraphy (SGS). Methods A retrospective study was performed in 15 patients with different degrees of xerostomia and suspected salivary gland dysfunction. Each patient underwent 68Ga-PSMA-11 PET/CT first and SGS the next day, and the findings of both scans were compared. Results The results of 68Ga-PSMA-11 PET/CT and SGS were consistent in 12/15 patients (80%) and were inconsistent in the remaining patients (20%). For 5 (33.3%) of 15 patients, 68Ga-PSMA-11 PET/CT provided more information than did SGS. Additionally, 68Ga-PSMA-11 PET/CT corrected the misdiagnosis by SGS for 1 patient. Conclusions 68Ga-PSMA-11 PET/CT is a potentially useful imaging tool for evaluating the function of salivary glands and lacrimal glands. 68Ga-PSMA-11 PET/CT can be a promising supplement to SGS, and its clinical value deserves further study.
Collapse
|
44
|
Holzapfel M, Mutas M, Chandralingam S, von Salisch C, Peric N, Segelke T, Fischer M, Chakraborty I, Parak WJ, Frangioni JV, Maison W. Nonradioactive Cell Assay for the Evaluation of Modular Prostate-Specific Membrane Antigen Targeting Ligands via Inductively Coupled Plasma Mass Spectrometry. J Med Chem 2019; 62:10912-10918. [PMID: 31714783 DOI: 10.1021/acs.jmedchem.9b01606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of novel prostate-specific membrane antigen (PSMA)-targeted radioactive theranostic agents is currently limited to facilities capable of working with high-energy radioisotopes. Even preselection of lead structures in vitro relies mostly on radioactive assays with PSMA(+) LNCaP and PSMA(-) PC-3 cells. Assays utilizing radioisotopes are time consuming, costly, and limit discovery to a small group of scientists with special facilities. Nonradioactive alternatives are therefore needed in the field. In this paper, we describe an inductively coupled plasma mass spectrometry (ICP-MS)-based method for the evaluation of PSMA-targeting ligands conjugated to DOTA-chelates of Europium. This method is based on LNCaP and PC-3 cells and has been validated with the well-established targeting ligand PSMA-617.
Collapse
Affiliation(s)
- Malte Holzapfel
- Department of Chemistry , Universität Hamburg , Bundesstrasse 45 , 20146 Hamburg , Germany
| | | | - Sharah Chandralingam
- Department of Chemistry , Universität Hamburg , Bundesstrasse 45 , 20146 Hamburg , Germany
| | - Carla von Salisch
- Department of Chemistry , Universität Hamburg , Bundesstrasse 45 , 20146 Hamburg , Germany
| | - Natalija Peric
- Department of Chemistry , Universität Hamburg , Bundesstrasse 45 , 20146 Hamburg , Germany
| | | | | | - Indranath Chakraborty
- Center for Hybrid Nanostructure (CHyN) , Universität Hamburg , Luruper Chausee 149 , 22761 Hamburg , Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructure (CHyN) , Universität Hamburg , Luruper Chausee 149 , 22761 Hamburg , Germany
| | - John V Frangioni
- Curadel, LLC , 11 Erie Drive , Natick , Massachusetts 01760 , United States
| | - Wolfgang Maison
- Department of Chemistry , Universität Hamburg , Bundesstrasse 45 , 20146 Hamburg , Germany
| |
Collapse
|
45
|
Ruigrok EAM, van Weerden WM, Nonnekens J, de Jong M. The Future of PSMA-Targeted Radionuclide Therapy: An Overview of Recent Preclinical Research. Pharmaceutics 2019; 11:E560. [PMID: 31671763 PMCID: PMC6921028 DOI: 10.3390/pharmaceutics11110560] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) has become a major focus point in the research and development of prostate cancer (PCa) imaging and therapeutic strategies using radiolabeled tracers. PSMA has shown to be an excellent target for PCa theranostics because of its high expression on the membrane of PCa cells and the increase in expression during disease progression. Therefore, numerous PSMA-targeting tracers have been developed and (pre)clinically studied with promising results. However, many of these PSMA-targeting tracers show uptake in healthy organs such as the salivary glands, causing radiotoxicity. Furthermore, not all patients respond to PSMA-targeted radionuclide therapy (TRT). This created the necessity of additional preclinical research studies in which existing tracers are reevaluated and new tracers are developed in order to improve PSMA-TRT by protecting the (PSMA-expressing) healthy organs and improving tumor uptake. In this review we will give an overview of the recent preclinical research projects regarding PCa-TRT using PSMA-specific radiotracers, which will give an indication of where the PSMA-TRT research movement is going and what we can expect in future clinical trials.
Collapse
Affiliation(s)
- Eline A M Ruigrok
- Dept. of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
- Dept. of Experimental Urology, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
| | | | - Julie Nonnekens
- Dept. of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
- Dept. of Molecular Genetics, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
| | - Marion de Jong
- Dept. of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|