1
|
Pervushin NV, Yapryntseva MA, Panteleev MA, Zhivotovsky B, Kopeina GS. Cisplatin Resistance and Metabolism: Simplification of Complexity. Cancers (Basel) 2024; 16:3082. [PMID: 39272940 PMCID: PMC11394643 DOI: 10.3390/cancers16173082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cisplatin is one of the most well-known anti-cancer drugs and has demonstrated efficacy against numerous tumor types for many decades. However, a key challenge with cisplatin, as with any chemotherapeutic agent, is the development of resistance with a resultant loss of efficacy. This resistance is often associated with metabolic alterations that allow insensitive cells to divide and survive under treatment. These adaptations could vary greatly among different tumor types and may seem questionable and incomprehensible at first glance. Here we discuss the disturbances in glucose, lipid, and amino acid metabolism in cisplatin-resistant cells as well as the roles of ferroptosis and autophagy in acquiring this type of drug intolerance.
Collapse
Affiliation(s)
- Nikolay V Pervushin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A Yapryntseva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail A Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, 17177 Stockholm, Sweden
| | - Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Afonso J, Barbosa-Matos C, Silvestre R, Pereira-Vieira J, Gonçalves SM, Mendes-Alves C, Parpot P, Pinto J, Carapito Â, Guedes de Pinho P, Santos L, Longatto-Filho A, Baltazar F. Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect. Cancers (Basel) 2024; 16:1418. [PMID: 38611096 PMCID: PMC11010907 DOI: 10.3390/cancers16071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Samuel Martins Gonçalves
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Camille Mendes-Alves
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
| | - Pier Parpot
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Carapito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Mylod E, McKenna E, Davern M, Barr MP, Donlon NE, Bibby BAS, Bhardwaj A, Reynolds JV, Lysaght J, Maher SG, Conroy MJ. Investigating the susceptibility of treatment-resistant oesophageal tumours to natural killer cell-mediated responses. Clin Exp Med 2022; 23:411-425. [PMID: 35364779 DOI: 10.1007/s10238-022-00811-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
The majority of oesophageal adenocarcinoma (OAC) patients do not respond to multimodal treatment regimens and face dismal survival rates. Natural killer (NK) cells are crucial anti-tumour immune cells, and this study investigated the susceptibility of treatment-resistant OAC cells to these potent tumour killers. Natural killer receptor (NKR) ligand expression by OE33CisP (cisplatin-sensitive) and OE33CisR (cisplatin-resistant) cells was investigated. The immunomodulatory effects of OE33CisP and OE33CisR cells on NK cell phenotype and function were assessed. Finally, the impact of chemotherapy regimens on NKR ligand shedding was examined. Our data revealed significantly less surface expression of activating ligands B7-H6, MICA/B, ULBP-3 and activating/inhibitory ligands PVRL-1 and PVRL-4 by OE33CisR cells, compared to OE33CisP cells. Co-culture with OE33CisR cells reduced the frequencies of NKp30+ and NKp46+ NK cells and increased frequencies of TIGIT+, FasL+ and TRAIL+ NK cells. Frequencies of IFN-γ-producing NK cells increased while frequencies of TIM-3+ NK cells decreased after culture with OE33CisP and OE33CisR cells. Frequencies of circulating NKp30+ NK cells were significantly lower in OAC patients with the poorest treatment response and in patients who received FLOT chemotherapy, while B7-H6 shedding by OAC tumour cells was induced by FLOT. Overall, OE33CisR cells express less activating NKR ligands than OE33CisP cells and have differential effects on NKR expression by NK cells. However, neither cell line significantly dampened NK cell cytokine production, death receptor expression or degranulation. In addition, our data indicate that FLOT chemotherapy may promote B7-H6 shedding and immune evasion with detrimental consequences in OAC patients.
Collapse
Affiliation(s)
- Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Ellen McKenna
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, UK
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
- National Oesophageal and Gastric Centre, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Stephen G Maher
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
4
|
Baumgarten N, Schmidt F, Wegner M, Hebel M, Kaulich M, Schulz MH. Computational prediction of CRISPR-impaired non-coding regulatory regions. Biol Chem 2021; 402:973-982. [PMID: 33660495 DOI: 10.1515/hsz-2020-0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our analysis protocol on the analysis of a genome-wide CRISPR screen in hTERT-RPE1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our analysis protocol is general and can be applied on any cell type and with different CRISPR enzymes.
Collapse
Affiliation(s)
- Nina Baumgarten
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Cardiopulmonary Institute (CPI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore, Singapore
| | - Martin Wegner
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Marie Hebel
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cluster of Excellence MMCI, Saarland University, and Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Cardiopulmonary Institute (CPI), Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Lucas AM, Bento AF, Vargas RMF, Scheffel TB, Rockenbach L, Diz FM, Capellari AR, Morrone FB, Cassel E. Use of supercritical CO2 to obtain Baccharis uncinella extracts with antioxidant and antitumor activity. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 2020; 34:13106-13124. [PMID: 32808332 DOI: 10.1096/fj.202000767r] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Collapse
Affiliation(s)
- Philippe Marchetti
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Quentin Fovez
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Nicolas Germain
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Raeeka Khamari
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Jérôme Kluza
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| |
Collapse
|
7
|
Yuan C, Xie Y, Sheng X, Xie X, Liu J, Zeng S, Wang X. Role of HOXB7 in promoting gastric cancer progression and oxaliplatin (L-OHP) resistance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1381-1389. [PMID: 32661473 PMCID: PMC7344019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIM Our study aimed to investigate the ways by which HOXB7 affects gastric cancer progression and oxaliplatin (L-OHP) resistance. METHODS First, the expression of HOXB7 in paired cancer and paracancerous tissues of L-OHP-sensitive and L-OHP-resistant gastric cancer patients was qualitatively and quantitatively analyzed by immunohistochemistry. Then, the expression of HOXB7 in these tissues was further quantitatively analyzed at protein and transcriptional levels. The expression of HOXB7 in the SGC-7901 L-OHP-resistant gastric cancer cell line was further verified by immunofluorescence, western blot, and RT-qPCR. In addition, by transfecting the SGC-7901 cell line, control (sh-con) and HOXB-7-silenced (sh-HOXB7) gastric cancer cell lines were created. Subsequently, the migratory and invasive abilities of these cells were determined by the transwell assay. The proliferation rate of both control and HOXB-7-silenced cells induced by varying concentrations of L-OHP was detected by the CCK-8 assay, while the degree of apoptosis in the same cells induced by 60 µM L-OHP was detected by flow cytometry. RESULTS AND CONCLUSION Results suggested that HOXB7 was overexpressed in both the tissues of L-OHP-resistant gastric cancer patients and the SGC-7901 gastric cancer cell line. Moreover, HOXB7 promoted the migratory and invasive abilities of gastric cancer cells. By silencing HOXB7 protein expression, the proliferation rate of L-OHP-resistant gastric cancer cells decreased considerably, while their degree of apoptosis increased significantly. These results showed that HOXB7 promoted gastric cancer progression and L-OHP resistance.
Collapse
Affiliation(s)
- Chunyan Yuan
- Department of Pathology, Minhang Hospital, Fudan UniversityShanghai, P. R. China
| | - Yun Xie
- Department of Pathology, Minhang Hospital, Fudan UniversityShanghai, P. R. China
| | - Xia Sheng
- Department of Pathology, Minhang Hospital, Fudan UniversityShanghai, P. R. China
| | - Xiaoli Xie
- Department of Pathology, Minhang Hospital, Fudan UniversityShanghai, P. R. China
| | - Jun Liu
- Department of Pathology, Minhang Hospital, Fudan UniversityShanghai, P. R. China
| | - Sien Zeng
- Department of Pathology, Affiliated Hospital, Guilin Medical UniversityGuilin, Guangxi, P. R. China
| | - Xuming Wang
- Department of Pathology, Affiliated Hospital, Guilin Medical UniversityGuilin, Guangxi, P. R. China
| |
Collapse
|
8
|
Generation of Stable cisPt Resistant Lung Adenocarcinoma Cells. Pharmaceuticals (Basel) 2020; 13:ph13060109. [PMID: 32485798 PMCID: PMC7345436 DOI: 10.3390/ph13060109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2023] Open
Abstract
Platinum compounds represent the backbone of combined chemotherapy protocols for advanced lung cancer. The mechanisms responsible for its frequent primary or acquired resistance to cisplatin (cisPt)-based chemotherapy remains enigmatic. The availability of two cell lines of the same origin, one resistant and the other sensitive, will facilitate research to reveal the mechanism of resistance formation. Lung adenocarcinoma cells, A240286S (A24), were cultivated in increasing cisPt concentrations over a prolonged time. After a significant increase in IC50 was measured, cultivation of the cells was continued in absence of cisPt and IC50s determined over a long period (>7 months). As a result, a cell line with lasting, high-level cisPt resistance, designated (D-)A24cisPt8.0, was obtained. The cells were cross-resistant to oxaliplatin and to pemetrexed at a low level. Previous publications have claimed that Leucine-rich repeat-containing protein 8 (LRRC8A and LRRC8D) of the volume-regulated anion channels (VRACs) affect cellular resistance to cisPt. Even though cisPt decreased LRRC8D expression levels, we showed by knockdown and overexpression experiments with LRRC8A and D that these proteins do not govern the observed cisPt resistance. The tumor cell sublines described here provide a powerful model to study the mechanisms of resistance to cisPt in lung cancer cells and beyond.
Collapse
|
9
|
Special Issue "Anticancer Drugs". Pharmaceuticals (Basel) 2019; 12:ph12030134. [PMID: 31527393 PMCID: PMC6789469 DOI: 10.3390/ph12030134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
The focus of this Special Issue of Pharmaceuticals is on the design, synthesis, and molecular mechanism of action of novel antitumor, drugs with a special emphasis on the relationship between the chemical structure and the biological activity of the molecules. This Special Issue also provides an understanding of the biologic and genotypic context in which targets are selected for oncology drug discovery, thus providing a rationalization for the biological activity of these drugs and guiding the design of more effective agents. In this Special Issue of Pharmaceuticals dedicated to anticancer drugs, we present a selection of preclinical research papers including both traditional chemotherapeutic agents and newer more targeted therapies and biological agents. We have included articles that report the design of small molecules with promising anticancer activity as tubulin inhibitors, vascular targeting agents, and topoisomerase targeting agents, alongside a comprehensive review of clinically successful antibody-drug conjugates used in cancer treatment.
Collapse
|
10
|
Bibby BAS, Miranda CS, Reynolds JV, Cawthorne CJ, Maher SG. Silencing microRNA-330-5p increases MMP1 expression and promotes an invasive phenotype in oesophageal adenocarcinoma. BMC Cancer 2019; 19:784. [PMID: 31391080 PMCID: PMC6686260 DOI: 10.1186/s12885-019-5996-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many patients diagnosed with oesophageal adenocarcinoma (OAC) present with advanced disease and approximately half present with metastatic disease. Patients with localised disease, who are managed with curative intent, frequently undergo neoadjuvant chemoradiotherapy. Unfortunately, ~ 70% of patients have little or no response to chemoradiotherapy. We previously identified miR-330-5p as being the most significantly downregulated microRNA in the pre-treatment OAC tumours of non-responders to treatment, but that loss of miR-330-5p had a limited impact on sensitivity to chemotherapy and radiation in vitro. Here, we further examined the impact of miR-330-5p loss on OAC biology. METHODS miR-330-5p was suppressed in OE33 OAC cells following stable transfection of a vector-driven anti-sense RNA. Whole transcriptome digital RNA-Seq was employed to identify miR-330-5p regulated genes, and qPCR was used for validation. Protein expression was assessed by protein array, Western blotting and zymography. Invasive potential was measured using a transwell assay system. Tumour xenograft growth profile studies were performed in immunocompromised CD1 mice. RESULTS In OE33 cells, suppression of miR-330-5p significantly altered expression of 42 genes, and several secreted proteases. MMP1 gene expression and protein secretion was significantly enhanced with miR-330-5p suppression. This corresponded to enhanced collagen invasion in vitro. In vivo, OE33-derived tumour xenografts with miR-330-5p suppression grew faster than controls. CONCLUSIONS Loss of miR-330-5p expression in OAC tumours may influence tumour cell invasive capacity, tumour growth and therapeutic sensitivity via alterations to the tumour microenvironment.
Collapse
Affiliation(s)
- Becky A S Bibby
- Cancer Biology and Therapeutics Lab, School of Life Sciences, University of Hull, Hull, HU6 7RX, UK.,Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester, M20 4GJ, UK
| | - Cecelia S Miranda
- PET Imaging Centre, School of Life Sciences, University of Hull, Hull, HU6 7RX, UK
| | - John V Reynolds
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | | | - Stephen G Maher
- Cancer Biology and Therapeutics Lab, School of Life Sciences, University of Hull, Hull, HU6 7RX, UK. .,Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|