1
|
Chen L, Hu Y, Cheng Y, Wang H. A Hydroxyquinoline Polymer with Excellent Amyloidosis Inhibition and Protein Delivery Ability to Combat Amyloid-β-Mediated Neurotoxicity. NANO LETTERS 2024. [PMID: 39352880 DOI: 10.1021/acs.nanolett.4c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The accumulation of abnormal protein deposits known as amyloid-β (Aβ) plaques contributes to the development and progression of Alzheimer's disease. Aggregated Aβ exacerbates oxidative stress by stimulating the production of reactive oxygen species (ROS) in a detrimental feedback loop. 8-Hydroxyquinoline (8-HQ) is recognized for its ability to inhibit or reverse Aβ aggregation and reduce neurotoxicity. Here, an 8-HQ-based polymer, DHQ, was developed to combat Aβ-mediated neurotoxicity by delivering an antioxidant enzyme. DHQ efficiently delivers superoxide dismutase into targeted cells, thereby downregulating the intracellular ROS level. Additionally, the polymer effectively inhibits the fibrillization of three proteins involved in fibrosis, β-lactoglobulin (BLG), insulin, and Aβ1-40, at nanomolar concentrations. Cell culture models demonstrated that DHQ reduces ROS levels induced by Aβ1-40 aggregation, rescuing cell viability and preventing apoptosis. Intracellular delivery of SOD further enhanced the ability to maintain the ROS homeostasis. This polymer offers a multifaceted approach to treating diseases associated with amyloidosis.
Collapse
Affiliation(s)
- Le Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yilun Hu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Zou J, Qian J, Liu S, Li R, Zhang X, Yang S, Liu Y, Liu W, Ma S, Shi D. Design, Synthesis, Biological Evaluation and Molecular Dynamics Simulations Study of Genistein‐
O
‐1,3,5‐Triazine Derivatives as Multifunctional Anti‐Alzheimer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing‐Pei Zou
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Jing‐Jing Qian
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Shan‐Ming Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Rui Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Xiao‐Qing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Shun Yang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Wei‐Wei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Shao‐Jie Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| | - Da‐Hua Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University/Jiangsu Key Laboratory of Marine Bioresources and environment, School of Pharmacy Jiangsu Ocean University Lianyungang 222005 People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology Lianyungang 222005 People's Republic of China
| |
Collapse
|
4
|
Chen W, Zhang H, Liu G, Kang J, Wang B, Wang J, Li J, Wang H. Lutein attenuated methylglyoxal-induced oxidative damage and apoptosis in PC12 cells via the PI3K/Akt signaling pathway. J Food Biochem 2022; 46:e14382. [PMID: 36017617 DOI: 10.1111/jfbc.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023]
Abstract
Methylglyoxal (MGO), a cytotoxic byproduct of glycolysis, causes neuro oxidative damage and apoptosis, and plays key roles in diabetic encephalopathy (DE). The goal of this research was to evaluate the roles of lutein attenuated MGO-induced damage in PC12 cells as well as the underlying mechanisms. The findings of this study showed that lutein has a significant impact on reducing the generation of reactive oxygen species (ROS) and oxidative stress in MGO-induced PC12 cells, which may be attributed to the increased antioxidant enzymes activity and the decreased MDA levels. Moreover, treatment with lutein also alleviated cell apoptosis and mitochondrial damage. Real-time PCR and western blot analysis showed that lutein enhanced the Bcl-2:Bax ratio, inhibited the expression of caspase-3 and caspase-9, and increased the protein level of phosphorylated Akt. The network pharmacology and molecular docking prediction results suggested that the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was a potential mechanism of lutein in DE treatment. Furthermore, LY294002, a specific PI3K inhibitor, partially abolished the protective effect of lutein. These results presented that lutein attenuated oxidative damage and apoptosis triggered by MGO in PC12 cells via the PI3K/Akt signaling pathway. PRACTICAL APPLICATIONS: Lutein is a common carotenoid dispersed in fruits and vegetables. This article confirmed a protective effect of lutein on oxidative damage and apoptosis in PC12 cells after MGO damage. These results indicated that lutein could potentially be developed as a nutraceutical or functional food in the prevention of diabetic-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hua Zhang
- Animal & Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Biao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Bayannur, China
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|
5
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Med Chem 2021; 13:2185-2200. [PMID: 34634921 DOI: 10.4155/fmc-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Instead of a conventional 'one-drug-one-target approach', this article presents a novel multi-target approach with a concept of trapping simultaneously as many detrimental factors as possible involved in the progression of Parkinson's disease. These factors include reactive carbonyl species, reactive oxygen species, Fe3+/Cu2+ and ortho-quinones (o-quinone), in particular. Different from the known multi-target strategies for Parkinson's disease, it is a sort of 'vacuum cleaning' strategy. The new agent consists of reactive carbonyl species scavenging moiety and reactive oxygen species scavenging and metal chelating moiety linked by a spacer. Provided that the capacity of scavenging o-quinones is demonstrated, this type of agent can further broaden its potential therapeutic profile. In order to support this new hypothetical approach, a number of simple in vitro experiments are proposed.
Collapse
|