1
|
Harris TJ, Trader DJ. Exploration of degrons and their ability to mediate targeted protein degradation. RSC Med Chem 2025:d4md00787e. [PMID: 39867589 PMCID: PMC11758578 DOI: 10.1039/d4md00787e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Degrons are short amino acid sequences that can facilitate the degradation of protein substrates. They can be classified as either ubiquitin-dependent or -independent based on their interactions with the ubiquitin proteasome system (UPS). These amino acid sequences are often found in exposed regions of proteins serving as either a tethering point for an interaction with an E3 ligase or initiating signaling for the direct degradation of the protein. Recent advancements in the protein degradation field have shown the therapeutic potential of both classes of degrons through leveraging their degradative effects to engage specific protein targets. This review explores what targeted protein degradation applications degrons can be used in and how they have inspired new degrader technology to target a wide variety of protein substrates.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine California 92617 USA
- Department of Chemistry, University of California Irvine California 92617 USA
| |
Collapse
|
2
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Setia N, Almuqdadi HTA, Abid M. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders. Eur J Med Chem 2024; 265:116041. [PMID: 38199162 DOI: 10.1016/j.ejmech.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The scientific community has shown considerable interest in proteolysis-targeting chimeras (PROTACs) in the last decade, indicating their remarkable potential as a means of achieving targeted protein degradation (TPD). Not only are PROTACs seen as valuable tools in molecular biology but their emergence as a modality for drug discovery has also garnered significant attention. PROTACs bind to E3 ligases and target proteins through respective ligands connected via a linker to induce proteasome-mediated protein degradation. The discovery of small molecule ligands for E3 ligases has led to the prevalent use of various E3 ligases in PROTAC design. Furthermore, the incorporation of different types of linkers has proven beneficial in enhancing the efficacy of PROTACs. By far more than 3300 PROTACs have been reported in the literature. Notably, Von Hippel-Lindau (VHL)-based PROTACs have surfaced as a propitious strategy for targeting proteins, even encompassing those that were previously considered non-druggable. VHL is extensively utilized as an E3 ligase in the advancement of PROTACs owing to its widespread expression in various tissues and well-documented binders. Here, we review the discovery of VHL ligands, the types of linkers employed to develop VHL-based PROTACs, and their subsequent modulation to design advanced non-conventional degraders to target various disease-causing proteins. Furthermore, we provide an overview of other E3 ligases recruited in the field of PROTAC technology.
Collapse
Affiliation(s)
- Nisha Setia
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
4
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Choudhary D, Kaur A, Singh P, Chaudhary G, Kaur R, Bayan MF, Chandrasekaran B, Marji SM, Ayman R. Target protein degradation by protacs: A budding cancer treatment strategy. Pharmacol Ther 2023; 250:108525. [PMID: 37696366 DOI: 10.1016/j.pharmthera.2023.108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Cancer is one of the most common causes of death. So, its lethal effect increases with time. Near about hundreds of cancers are known in humans. Cancer treatment is done to cure or prolonged remission, and shrinkage of the tumor. Cytotoxic agents, biological agents/targeted drugs, hormonal drugs, surgery, radiotherapy/proton therapy, chemotherapy, immunotherapy, and gene therapy are currently used in the treatment of cancer but their cost is high and cause various side effects. Seeing this, some new targeted strategies such as PROTACs are the need of the time. Proteolysis targeting chimera (PROTAC) has become one of the most discussed topics regarding cancer treatment. Few of the PROTAC molecules are in the trial phases. PROTACs have many advantages over other strategies such as modularity, compatibility, sub-stoichiometric activity, acting on undruggable targets, molecular design, and acts on intracellular targets, selectivity and specificity can be recruited for any cancer, versatility, and others. PROTACs are having some unclear questions on their pharmacokinetics, heavy-molecular weight, etc. PROTACs are anticipated to bring about a conversion in current healthcare and will emerge as booming treatments. In this review article we summarize PROTACs, their mechanism of action, uses, advantages, disadvantages, challenges, and future aspects for the successful development of potent PROTACs as a drug strategy.
Collapse
Affiliation(s)
- Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Pargat Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Gaurav Chaudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Mohammad F Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | | | - Saeed M Marji
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | - Reema Ayman
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| |
Collapse
|
6
|
Liu X, Ciulli A. Proximity-Based Modalities for Biology and Medicine. ACS CENTRAL SCIENCE 2023; 9:1269-1284. [PMID: 37521793 PMCID: PMC10375889 DOI: 10.1021/acscentsci.3c00395] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Indexed: 08/01/2023]
Abstract
Molecular proximity orchestrates biological function, and blocking existing proximities is an established therapeutic strategy. By contrast, strengthening or creating neoproximity with chemistry enables modulation of biological processes with high selectivity and has the potential to substantially expand the target space. A plethora of proximity-based modalities to target proteins via diverse approaches have recently emerged, opening opportunities for biopharmaceutical innovation. This Outlook outlines the diverse mechanisms and molecules based on induced proximity, including protein degraders, blockers, and stabilizers, inducers of protein post-translational modifications, and agents for cell therapy, and discusses opportunities and challenges that the field must address to mature and unlock translation in biology and medicine.
Collapse
Affiliation(s)
- Xingui Liu
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein
Degradation, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, United Kingdom
| |
Collapse
|
7
|
Gao J, Yang J, Xue S, Ding H, Lin H, Luo C. A patent review of PRMT5 inhibitors to treat cancer (2018 - present). Expert Opin Ther Pat 2023; 33:265-292. [PMID: 37072380 DOI: 10.1080/13543776.2023.2201436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Protein arginine methyltransferases 5 (PRMT5) belongs to type II arginine methyltransferases. Since PRMT5 plays an essential role in mammalian cells, it can regulate various physiological functions, including cell growth and differentiation, DNA damage repair, and cell signal transduction. It is an epigenetic target with significant clinical potential and may become a powerful drug target for treating cancers and other diseases. AREAS COVERED This review provides an overview of small molecule inhibitors and their associated combined treatment strategies targeting PRMT5 in cancer treatment patents published since 2018, and also summarizes the progress made by several biopharmaceutical companies in the development, application, and clinical trials of small molecule PRMT5 inhibitors. The data in this review come from WIPO, UniProt, PubChem, RCSB PDB, National Cancer Institute, and so on. EXPERT OPINION Many PRMT5 inhibitors have been developed with good inhibitory activities, but most of them lack selectivities and are associated with adverse clinical responses. In addition, the progress was almost all based on the previously established skeleton, and more research and development of a new skeleton still needs to be done. The development of PRMT5 inhibitors with high activities and selectivities is still an essential aspect of research in recent years.
Collapse
Affiliation(s)
- Jing Gao
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Yang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Chen W, Liu J, Zheng C, Bai Q, Gao Q, Zhang Y, Dong K, Lu T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int J Nanomedicine 2022; 17:2611-2628. [PMID: 35712639 PMCID: PMC9196673 DOI: 10.2147/ijn.s366187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT. Therefore, this paper reviews various strategies to enhance the antitumor properties of nanomaterials by modulating tumor acidity. Ultimately, the performance of CDT can be further improved by inducing strong oxidative stress to produce sufficient ·OH. In this paper, the various acidification pathways and proton pumps with potential acidification functions are mainly discussed, such as catalytic enzymes, exogenous acids, CAIX, MCT, NHE, NBCn1, etc. The problems, opportunities, and challenges of CDT in the cancer field are also discussed, thereby providing new insights for the design of nanomaterials and laying the foundation for their future clinical applications.
Collapse
Affiliation(s)
- Wenting Chen
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinxi Liu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Caiyun Zheng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Que Bai
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yanni Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710072, People's Republic of China
| | - Tingli Lu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
9
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|