1
|
Liu J, Li C, Zhang K, Zhang S, Zhang C, Yang Y, Wang L. Controllable Solid Electrolyte Interphase by Ionic Environment Regulation for Stable Zn-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309057. [PMID: 38072772 DOI: 10.1002/smll.202309057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Indexed: 05/12/2024]
Abstract
Artificial solid electrolyte interphase in organic solutions is effective and facile for long-cycling aqueous zinc ion batteries. However, the specific effects on different ionic environments have not been thoroughly investigated. Herein, pyromellitic acid (PA) are employed as organic ligand to coordinate with Zn2+ under various ionic environments. The connection between the ionic environment and reaction spontaneity is analyzed to provide insights into the reasons behind the effectiveness of the SEI layer and to characterize its protective impact on the zinc anode. Notably, the PA solution (pH4) lacking OH- contributes to the formation of a dense and ultrathin SEI with Zn-PA coordination, preventing direct contact between the anode and electrolyte. Moreover, the presence of organic functional groups facilitates a uniform flux of Zn2+. These advantages enable stable cycling of the PA4-Zn symmetric cell at a current density of 3 mA cm-2 for over 3500 h. The PA4-Zn//MVO full cell demonstrates excellent electrochemical reversibility. Investigating the influence of the ionic environment on SEI generation informs the development of novel SEI strategies.
Collapse
Affiliation(s)
- Jingwen Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Caixia Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Kai Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shenghao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yu Yang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Putra ON, Musfiroh I, Elisa S, Musa M, Ikram EHK, Chaidir C, Muchtaridi M. Sodium Starch Glycolate (SSG) from Sago Starch ( Metroxylon sago) as a Superdisintegrant: Synthesis and Characterization. Molecules 2023; 29:151. [PMID: 38202734 PMCID: PMC10779860 DOI: 10.3390/molecules29010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The characteristics of sago starch exhibit remarkable resemblances to those of cassava, potato, and maize starches. This review intends to discuss and summarize the synthesis and characterization of sodium starch glycolate (SSG) from sago starch as a superdisintegrant from published journals using keywords in PubMed, Scopus, and ScienceDirect databases by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020). There are many methods for synthesizing sodium starch glycolate (SSG). Other methods may include the aqueous, extrusion, organic solvent slurry, and dry methods. Sago starch is a novel form of high-yield starch with significant development potential. After cross-linking, the phosphorus content of sago starch increases by approximately 0.3 mg/g, corresponding to approximately one phosphate ester group per 500 anhydroglucose units. The degree of substitution (DS) of sodium starch glycolate (SSG) from sago ranges from 0.25 to 0.30; in drug formulations, sodium starch glycolate (SSG) from sago ranges from 2% to 8% w/w. Higher levels of sodium starch glycolate (SSG) (2% and 4% w/w) resulted in shorter disintegration times (within 1 min). Sago starch is more swellable and less enzymatically digestible than pea and corn starch. These investigations demonstrate that sago starch is a novel form of high-yield starch with tremendous potential for novel development as superdisintegrant tablets and capsules.
Collapse
Affiliation(s)
- Okta Nama Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
| | - Sarah Elisa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Musa Musa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies and Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
| | - Chaidir Chaidir
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Cibinong 16912, West Java, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jl. Soekarno KM-21, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
3
|
Sabr MW, Ali DS, Smaoui S, Lorenzo JM. Spectrophotometric Determination of Loperamide Hydrochloride by Ion-Pair Formation with Rose Bengal Reagent. FOOD ANAL METHOD 2023; 16:1172-1179. [DOI: 10.1007/s12161-023-02498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2024]
|
4
|
Torrado-Salmerón C, Guarnizo-Herrero V, Torrado G, Peña MÁ, Torrado-Santiago S, de la Torre-Iglesias PM. Solid dispersions of atorvastatin with Kolliphor RH40: Enhanced supersaturation and improvement in a hyperlipidemic rat model. Int J Pharm 2023; 631:122520. [PMID: 36581105 DOI: 10.1016/j.ijpharm.2022.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
Atorvastatin is a potent lipid-lowering drug with poor solubility and high presystemic clearance that limits its therapeutic efficacy. The aim of this study was to develop solid dispersions and micellar systems to obtain fast-dissolving atorvastatin systems that enhances their anti-hyperlipidemic effect. Solubility and wettability studies allow the development of solid dispersions with low proportions of croscarmellose sodium as hydrophilic carrier. Solid state characterization studies indicated that the addition of Kolliphor® RH40 surfactant to solid dispersions increases intermolecular hydrogen bonding between drug and polymer chains. Dissolution studies in biorelevant Fasted State Simulate Intestinal Fluid (FaSSIF pH 6.5) medium showed for atorvastatin solid dispersion a supersaturation peak of atorvastatin followed by an aggregation/precipitation process. Only the presence of a surfactant such as Kolliphor® RH40 in atorvastatin micellar system, promotes the presence of micelles that achieve delayed recrystallization. Efficacy studies were carried out using a hyperlipidemic model of rats fed with a high- fat diet. The atorvastatin micellar system at doses of 10 mg/kg, revealed a significant improvement in serum levels of total cholesterol, low-density lipoproteins, and triglycerides compared to atorvastatin raw material. This micellar system also exhibited more beneficial effects on liver steatosis, inflammation and ballooning injury.
Collapse
Affiliation(s)
- Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain.
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Banarase NB, Kaur CD. Whole whey stabilized oleanolic acid nanosuspension: Formulation and evaluation study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
Vlad RA, Antonoaea P, Todoran N, Muntean DL, Rédai EM, Silași OA, Tătaru A, Bîrsan M, Imre S, Ciurba A. Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets. Saudi Pharm J 2021; 29:1029-1042. [PMID: 34588849 PMCID: PMC8463482 DOI: 10.1016/j.jsps.2021.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022] Open
Abstract
Obtaining orodispersible tablets (ODT) containing substances from the second Biopharmaceutical Class has raised concerns as the dissolution test is challenging. This study aimed to select suitable excipients for developing orodispersible tablets containing cannabidiol (CBD) by direct compression method. No similar studies were found in the literature. Excipients from different classes were characterized using the SeDeM-ODT tool: fillers – lactose (LCT) and microcrystalline cellulose (CelMC), sweeteners – sorbitol (SRB) and mannitol (MNT), disintegrants – sodium starch glycolate (SSG), sodium croscarmellose (CCS), soy polysaccharides (Emcosoy® – EMCS) and two co-processed excipients (Prosolv®-ODT G2 – PODTG2 and Prosolv® EasyTab sp – PETsp). Drug compatibility with excipients in binary mixtures (1:1) was verified by Differential Scanning Calorimetry (DSC) and Fourier Transform-Infrared (FTIR) spectroscopy. Using the SeDeM-ODT expert system, the fillers and the co-processed excipients showed good properties regarding compressibility and disintegration behavior. Also, the DSC and FTIR results showed that small or no interactions between the CBD and the excipients took place.
Collapse
Affiliation(s)
- Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Daniela-Lucia Muntean
- Analytical Chemistry and Drug Analysis Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Emőke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Oana Alexandra Silași
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Anamaria Tătaru
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Magdalena Bîrsan
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania.,Pharmaceutical Technology Department, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Silvia Imre
- Analytical Chemistry and Drug Analysis Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|