1
|
Zhang H, Jing Z, Liu R, Shada Y, Shria S, Cui S, Ren Y, Wei Y, Li L, Peng S. LRRC8A promotes the initial development of oxaliplatin resistance in colon cancer cells. Heliyon 2023; 9:e16872. [PMID: 37313175 PMCID: PMC10258452 DOI: 10.1016/j.heliyon.2023.e16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Leucine-rich repeat-containing 8 A (LRRC8A) is an essential component of the volume-regulated anion channel (VRAC), which plays a vital role in cell proliferation, migration, apoptosis, and drug resistance. In this study, we investigated the effects of LRRC8A on oxaliplatin resistance in colon cancer cells. The cell viability was measured after oxaliplatin treatment with cell counting kit-8 (CCK8) assay. RNA sequencing was used to analyze the differentially expressed genes (DEGs) between HCT116 and oxaliplatin-resistant HCT116 cell line (R-Oxa) cells. CCK8 assay and apoptosis assay indicated that R-Oxa cells significantly promoted drug resistance to oxaliplatin compared with native HCT116 cells. R-Oxa cells, deprived of oxaliplatin treatment for over six months (R-Oxadep), maintained a similar resistant property as R-Oxa cells. The LRRC8A mRNA and protein expression were markedly increased in both R-Oxa and R-Oxadep cells. Regulation of LRRC8A expression affected the resistance to oxaliplatin in native HCT116 cells, but not R-Oxa cells. Furthermore, The transcriptional regulation of genes in the platinum drug resistance pathway may contribute to the maintenance of oxaliplatin resistance in colon cancer cells. In conclusion, we propose that LRRC8A promotes the acquisition rather than the maintenance of oxaliplatin resistance in colon cancer cells.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Zhenghui Jing
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Rong Liu
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yassin Shada
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Sindhwani Shria
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Shiyu Cui
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yuhua Ren
- Department of Pathology of Basic Medicine College, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710049, Shannxi, China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, China
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
2
|
Ji P, Wang P, Chen H, Xu Y, Ge J, Tian Z, Yan Z. Potential of Copper and Copper Compounds for Anticancer Applications. Pharmaceuticals (Basel) 2023; 16:234. [PMID: 37259382 PMCID: PMC9960329 DOI: 10.3390/ph16020234] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023] Open
Abstract
Inducing cancer cell death has always been a research hotspot in life sciences. With the continuous deepening and diversification of related research, the potential value of metal elements in inducing cell death has been explored. Taking iron as an example, ferroptosis, mainly characterized by increasing iron load and driving the production of large amounts of lipid peroxides and eventually leading to cell death, has recently attracted great interest in the cancer research community. After iron, copper, a trace element, has received extensive attention in cell death, especially in inducing tumor cell death. Copper and its complexes can induce autophagy or apoptosis in tumor cells through a variety of different mechanisms of action (activation of stress pathways, arrest of cell cycle, inhibition of angiogenesis, cuproptosis, and paraptosis), which are promising in cancer therapy and have become new hotspots in cancer treatment research. This article reviews the main mechanisms and potential applications of novel copper and copper compound-induced cell death, focusing on copper compounds and their anticancer applications.
Collapse
Affiliation(s)
- Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Wang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Yajing Xu
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jianwen Ge
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zechong Tian
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zhirong Yan
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
3
|
Widmer CA, Klebic I, Domanitskaya N, Decollogny M, Howald D, Siffert M, Essers P, Nowicka Z, Stokar-Regenscheit N, van de Ven M, de Korte-Grimmerink R, Galván JA, Pritchard CE, Huijbers IJ, Fendler W, Vens C, Rottenberg S. Loss of the volume-regulated anion channel components LRRC8A and LRRC8D limits platinum drug efficacy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1266-1281. [PMID: 36467895 PMCID: PMC7613873 DOI: 10.1158/2767-9764.crc-22-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years platinum (Pt) drugs have been found to be especially efficient to treat patients with cancers that lack a proper DNA damage response, e.g. due to dysfunctional BRCA1. Despite this knowledge, we are still missing helpful markers to predict Pt response in the clinic. We have previously shown that volume-regulated anion channels, containing the subunits LRRC8A and LRRC8D, promote the uptake of cisplatin and carboplatin in BRCA1-proficient cell lines. Here, we show that the loss of LRRC8A or LRRC8D significantly reduces the uptake of cis- and carboplatin in BRCA1;p53-deficient mouse mammary tumor cells. This results in reduced DNA damage and in vivo drug resistance. In contrast to Lrrc8a, the deletion of the Lrrc8d gene does not affect the viability and fertility of mice. Interestingly, Lrrc8d-/- mice tolerate a two-fold cisplatin maximum-tolerable dose. This allowed us to establish a mouse model for intensified Pt-based chemotherapy, and we found that an increased cisplatin dose eradicates BRCA1;p53-deficient tumors, whereas eradication is not possible in WT mice. Moreover, we show that decreased expression of LRRC8A/D in head and neck squamous cell carcinoma patients, who are treated with a Pt-based chemoradiotherapy, leads to decreased overall survival of the patients. In particular, high cumulative cisplatin dose treatments lost their efficacy in patients with a low LRRC8A/D expression in their cancers. Our data therefore suggest that LRRC8A and LRRC8D should be included in a prospective trial to predict the success of intensified cis- or car-boplatin-based chemotherapy.
Collapse
Affiliation(s)
- Carmen A. Widmer
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ismar Klebic
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- COMPATH, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natalya Domanitskaya
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Morgane Decollogny
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Myriam Siffert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Essers
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renske de Korte-Grimmerink
- Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José A. Galván
- Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer and Aging Research (MCCA), Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer and Aging Research (MCCA), Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Conchita Vens
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Corresponding Author: Sven Rottenberg, Institute of Animal Pathology and Bern Center for Precision Medicine, Länggassstrasse 122, Bern 3012, Switzerland. Phone: +41-(0)31-6842395; E-mail:
| |
Collapse
|
4
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
1H HR-MAS NMR Based Metabolic Profiling of Lung Cancer Cells with Induced and De-Induced Cisplatin Resistance to Reveal Metabolic Resistance Adaptations. Molecules 2021; 26:molecules26226766. [PMID: 34833859 PMCID: PMC8625954 DOI: 10.3390/molecules26226766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cisplatin (cisPt) is an important drug that is used against various cancers, including advanced lung cancer. However, drug resistance is still a major ongoing problem and its investigation is of paramount interest. Here, a high-resolution magic angle spinning (HR-MAS) NMR study is presented deciphering the metabolic profile of non-small cell lung cancer (NSCLC) cells and metabolic adaptations at different levels of induced cisPt-resistance, as well as in their de-induced counterparts (cells cultivated in absence of cisPt). In total, fifty-three metabolites were identified and quantified in the 1H-HR-MAS NMR cell spectra. Metabolic adaptations to cisPt-resistance were detected, which correlated with the degree of resistance. Importantly, de-induced cell lines demonstrated similar metabolic adaptations as the corresponding cisPt-resistant cell lines. Metabolites predominantly changed in cisPt resistant cells and their de-induced counterparts include glutathione and taurine. Characteristic metabolic patterns for cisPt resistance may become relevant as biomarkers in cancer medicine.
Collapse
|
6
|
Beyond Single-Cell Analysis of Metallodrugs by ICP-MS: Targeting Cellular Substructures. Int J Mol Sci 2021; 22:ijms22179468. [PMID: 34502377 PMCID: PMC8431512 DOI: 10.3390/ijms22179468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Platinum compounds such as cisplatin (cisPt) embody the backbone of combination chemotherapy protocols against advanced lung cancer. However, their efficacy is primarily limited by inherent or acquired platinum resistance, the origin of which has not been fully elucidated yet, although of paramount interest. Using single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), this study quantifies cisPt in single cancer cells and for the first time in isolated nuclei. A comparison of cisPt uptake was performed between a wild type (wt) cancer cell line and related resistant sublines. In both, resistant cells, wt cells, and their nuclei, cisPt uptake was measured at different incubation times. A lower amount of cisPt was found in resistant cell lines and their nuclei compared to wt cells. Moreover, the abundance of internalized cisPt decreased with increasing resistance. Interestingly, concentrations of cisPt found within the nuclei were higher than compared to cellular concentrations. Here, we show, that SC-ICP-MS allows precise and accurate quantification of metallodrugs in both single cells and cell organelles such as nuclei. These findings pave the way for future applications investigating the potency and efficacy of novel metallodrugs developed for cancer treatment.
Collapse
|
7
|
Kuo MT, Huang YF, Chou CY, Chen HHW. Targeting the Copper Transport System to Improve Treatment Efficacies of Platinum-Containing Drugs in Cancer Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14060549. [PMID: 34201235 PMCID: PMC8227247 DOI: 10.3390/ph14060549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
The platinum (Pt)-containing antitumor drugs including cisplatin (cis-diamminedichloroplatinum II, cDDP), carboplatin, and oxaliplatin, have been the mainstay of cancer chemotherapy. These drugs are effective in treating many human malignancies. The major cell-killing target of Pt drugs is DNA. Recent findings underscored the important roles of Pt drug transport system in cancer therapy. While many mechanisms have been proposed for Pt-drug transport, the high-affinity copper transporter (hCtr1), Cu chaperone (Atox1), and Cu exporters (ATP7A and ATP7B) are also involved in cDDP transport, highlighting Cu homeostasis regulation in Pt-based cancer therapy. It was demonstrated that by reducing cellular Cu bioavailable levels by Cu chelators, hCtr1 is transcriptionally upregulated by transcription factor Sp1, which binds the promoters of Sp1 and hCtr1. In contrast, elevated Cu poisons Sp1, resulting in suppression of hCtr1 and Sp1, constituting the Cu-Sp1-hCtr1 mutually regulatory loop. Clinical investigations using copper chelator (trientine) in carboplatin treatment have been conducted for overcoming Pt drug resistance due in part to defective transport. While results are encouraging, future development may include targeting multiple steps in Cu transport system for improving the efficacies of Pt-based cancer chemotherapy. The focus of this review is to delineate the mechanistic interrelationships between Cu homeostasis regulation and antitumor efficacy of Pt drugs.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (C.-Y.C.); (H.H.W.C.)
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (C.-Y.C.); (H.H.W.C.)
| |
Collapse
|
8
|
Studer V, Anghel N, Desiatkina O, Felder T, Boubaker G, Amdouni Y, Ramseier J, Hungerbühler M, Kempf C, Heverhagen JT, Hemphill A, Ruprecht N, Furrer J, Păunescu E. Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals (Basel) 2020; 13:E471. [PMID: 33339451 PMCID: PMC7767221 DOI: 10.3390/ph13120471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic Toxoplasmagondii tachyzoites constitutively expressing β-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited T.gondii proliferation with IC50 values ranging from 90 to 539 nM, and seven derivatives displayed IC50 values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis. Overall, compound flexibility and size impacted on the anti-Toxoplasma activity. The anticancer activity of 14 compounds was assessed against cancer cell lines A2780, A2780cisR (human ovarian cisplatin sensitive and resistant), A24, (D-)A24cisPt8.0 (human lung adenocarcinoma cells wild type and cisPt resistant subline). The compounds displayed IC50 values ranging from 23 to 650 nM. In A2780cisR, A24 and (D-)A24cisPt8.0 cells, all compounds were considerably more cytotoxic than cisplatin, with IC50 values lower by two orders of magnitude. Irrespective of the nature of the connectors (alkyl/aryl) or the numbers of the di-ruthenium units (two/three), ester conjugates 6-10 and 20 exhibited similar antiproliferative profiles, and were more cytotoxic than amide analogues 11-14, 23, and 24. Polynuclear conjugates with multiple trithiolato-bridged di-ruthenium(II)-arene moieties deserve further investigation.
Collapse
Affiliation(s)
- Valentin Studer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Nicoleta Anghel
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Timo Felder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Ghalia Boubaker
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Yosra Amdouni
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
- Laboratoire de Parasitologie, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Jessica Ramseier
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Martin Hungerbühler
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Christoph Kempf
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Johannes Thomas Heverhagen
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Nico Ruprecht
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Emilia Păunescu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| |
Collapse
|