1
|
Giugliano G, Gajo M, Marforio TD, Zerbetto F, Mattioli EJ, Calvaresi M. Identification of Potential Drug Targets of Calix[4]arene by Reverse Docking. Chemistry 2024; 30:e202400871. [PMID: 38777795 DOI: 10.1002/chem.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.
Collapse
Affiliation(s)
- Giulia Giugliano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Margherita Gajo
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| |
Collapse
|
2
|
Tran ML, Borie-Guichot M, Garcia V, Oukhrib A, Génisson Y, Levade T, Ballereau S, Turrin CO, Dehoux C. Phosphorus Dendrimers for Metal-Free Ligation: Design of Multivalent Pharmacological Chaperones against Gaucher Disease. Chemistry 2023; 29:e202301210. [PMID: 37313991 DOI: 10.1002/chem.202301210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes β-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best β-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase β-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.
Collapse
Affiliation(s)
- My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | | | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| | - Cédric-Olivier Turrin
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse CEDEX 4, France
- LCC-CNRS, Université de Toulouse, CNRS, 31013, Toulouse CEDEX 6, France
- IMD-Pharma, 205 Route de Narbonne, 31077, Toulouse CEDEX 4, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
3
|
Bennett JJ, Murphy PV. Flow chemistry based catalytic hydrogenation for improving the synthesis of 1-deoxynojirimycin (DNJ) from an l-sorbose derived precursor. Carbohydr Res 2023; 529:108845. [PMID: 37210941 DOI: 10.1016/j.carres.2023.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
1-Deoxynojirimycin (1-DNJ) is a glycoprocessing inhibitor, and it serves as a synthetic precursor to two of three currently marketed iminosugar drugs, miglustat (N-butyl DNJ/Zavesca®) and miglitol (Glyset®). Herein a continuous flow procedure is presented that shortens a synthesis of 1-DNJ from an intermediate prepared from l-sorbose. Batch reactions involving an azide reduction, subsequent reductive amination-based cyclisation, and O-benzyl deprotection in a previous report required two steps and the use of an acid. Here, this sequence is achieved in one step using the H-Cube® MiniPlus continuous flow reactor. Subsequent reductive amination of 1-DNJ with butanal using the H-Cube® gave NB-DNJ.
Collapse
Affiliation(s)
- Jack J Bennett
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, SSPC - The SFI Research Centre for Pharmaceuticals, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
4
|
Bambus[4,6]urils as Dual Scaffolds for Multivalent Iminosugar Presentation and Ion Transport: Access to Unprecedented Glycosidase-Directed Anion Caging Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154772. [PMID: 35897947 PMCID: PMC9330389 DOI: 10.3390/molecules27154772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology.
Collapse
|
5
|
Vanni C, Clemente F, Paoli P, Morrone A, Matassini C, Goti A, Cardona F. 3,4,5-Trihydroxypiperidine based multivalent glucocerebrosidase (GCase) enhancers. Chembiochem 2022; 23:e202200077. [PMID: 35322924 PMCID: PMC9400994 DOI: 10.1002/cbic.202200077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne‐azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2‐fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.
Collapse
Affiliation(s)
- Costanza Vanni
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Clemente
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Paolo Paoli
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Amelia Morrone
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, ITALY
| | - Camilla Matassini
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Andrea Goti
- University of Florence: Universita degli Studi di Firenze, Department of Chemistry "Ugo Schiff", ITALY
| | - Francesca Cardona
- Università di Firenze, Dipartimento di Chimica, Via della Lastruccia 13, 50019, Sesto Fiorentino, ITALY
| |
Collapse
|
6
|
Hybrid Multivalent Jack Bean α-Mannosidase Inhibitors: The First Example of Gold Nanoparticles Decorated with Deoxynojirimycin Inhitopes. Molecules 2021; 26:molecules26195864. [PMID: 34641408 PMCID: PMC8512634 DOI: 10.3390/molecules26195864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (β-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound.
Collapse
|
7
|
Evangelista TCS, López Ó, Ferreira SB, Fernández-Bolaños JG, Sydnes MO, Lindbäck E. Development of tacrine clusters as positively cooperative systems for the inhibition of acetylcholinesterase. J Enzyme Inhib Med Chem 2021; 36:1659-1664. [PMID: 34294013 PMCID: PMC8317962 DOI: 10.1080/14756366.2021.1954917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The synthesis of four tetra-tacrine clusters where the tacrine binding units are attached to a central scaffold via linkers of variable lengths is described. The multivalent inhibition potencies for the tacrine clusters were investigated for the inhibition of acetylcholinesterase. Two of the tacrine clusters displayed a small but significant multivalent inhibition potency in which the binding affinity of each of the tacrine binding units increased up to 3.2 times when they are connected to the central scaffold.
Collapse
Affiliation(s)
- Tereza Cristina Santos Evangelista
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.,Department of Organic Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Emil Lindbäck
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
8
|
Della Sala P, Vanni C, Talotta C, Di Marino L, Matassini C, Goti A, Neri P, Šesták S, Cardona F, Gaeta C. Multivalent resorcinarene clusters decorated with DAB-1 inhitopes: targeting Golgi α-mannosidase from Drosophila melanogaster. Org Chem Front 2021. [DOI: 10.1039/d1qo01048d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Resorcinarene@DAB-1 clusters show a remarkable multivalent effect towards GMIIb over other α-mannosidases, due to a rebinding mechanism: two DAB-1 units of the cluster bind the two Zn-sites of the dimeric protein in an alternate way.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Costanza Vanni
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Luca Di Marino
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovakia
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
- Associated with LENS, via N. Carrara 1, 50019 Sesto Fiorentino, FI, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry (SupraLab@UniSa), Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84984, Fisciano, Italy
| |
Collapse
|