2
|
Caligiuri R, Massai L, Geri A, Ricciardi L, Godbert N, Facchetti G, Lupo MG, Rossi I, Coffetti G, Moraschi M, Sicilia E, Vigna V, Messori L, Ferri N, Mazzone G, Aiello I, Rimoldi I. Cytotoxic Pt(II) complexes containing alizarin: a selective carrier for DNA metalation. Dalton Trans 2024; 53:2602-2618. [PMID: 38223973 DOI: 10.1039/d3dt03889k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Many efforts have been made in the last few decades to selectively transport antitumor agents to their potential target sites with the aim to improve efficacy and selectivity. Indeed, this aspect could greatly improve the beneficial effects of a specific anticancer agent especially in the case of orphan tumors like the triple negative breast cancer. A possible strategy relies on utilizing a protective leaving group like alizarin as the Pt(II) ligand to reduce the deactivation processes of the pharmacophore enacted by Pt resistant cancer cells. In this study a new series of neutral mixed-ligand Pt(II) complexes bearing alizarin and a variety of diamine ligands were synthesized and spectroscopically characterized by FT-IR, NMR and UV-Vis analyses. Three Pt(II) compounds, i.e., 2b, 6b and 7b, emerging as different both in terms of structural properties and cytotoxic effects (not effective, 10.49 ± 1.21 μM and 24.5 ± 1.5 μM, respectively), were chosen for a deeper investigation of the ability of alizarin to work as a selective carrier. The study comprises the in vitro cytotoxicity evaluation against triple negative breast cancer cell lines and ESI-MS interaction studies relative to the reaction of the selected Pt(II) complexes with model proteins and DNA fragments, mimicking potential biological targets. The results allow us to suggest the use of complex 6b as a prospective anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Rossella Caligiuri
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Lara Massai
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Andrea Geri
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Loredana Ricciardi
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Nicolas Godbert
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | | | - Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Vincenzo Vigna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
| | - Iolinda Aiello
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.
- LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.
| |
Collapse
|
3
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
Mastalarz H, Mastalarz A, Wietrzyk J, Milczarek M, Kochel A, Regiec A. Studies on the Complexation of Platinum(II) by Some 4-Nitroisoxazoles and Testing the Cytotoxic Activity of the Resulting Complexes. Molecules 2023; 28:molecules28031284. [PMID: 36770951 PMCID: PMC9920747 DOI: 10.3390/molecules28031284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Two novel platinum(II) complexes (1 and 2) were synthesized by the reaction of the appropriate 3,5-dimethyl-4-nitroisoxazole with K2PtCl4 and characterized by elemental analysis, ESI MS spectrometry, 1H NMR and far-IR spectroscopy. The structure of trans complex 2 was additionally confirmed by X-ray diffraction. The cytotoxicity of the investigated compounds was examined in vitro on three human cancer cell lines (MCF-7 breast, ES-2 ovarian and A-549 lung adenocarcinomas) in both normoxia and hypoxia conditions. LogPs of complexes were measured using the shake-flask method. The trans complex 2 showed much better cytotoxic activity than cisplatin for all the tested cancer cell lines. Cis complex 1 was inferior to its trans isomer against all the cancer lines tested in normoxia conditions but proved superior to the reference cisplatin against the MCF-7 and A549 lines, and showed similar activity to cisplatin against the ES-2 line. To gain additional information that may facilitate the explanation of the pharmacological activity of the tested compounds, cellular platinum uptake and stability in L-glutathione solution were determined for both compounds 1 and 2.
Collapse
Affiliation(s)
- Henryk Mastalarz
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wrocław Medical University, 211A Borowska Street, 50-556 Wrocław, Poland
- Correspondence: (H.M.); (A.R.); Tel.: +48-71-78-40-347 (H.M. & A.R.); Fax: +48-71-78-40-341 (H.M. & A.R.)
| | - Agnieszka Mastalarz
- Faculty of Chemistry, The University of Wrocław, 14F Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl Street, 53-114 Wrocław, Poland
| | - Andrzej Kochel
- Faculty of Chemistry, The University of Wrocław, 14F Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Andrzej Regiec
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wrocław Medical University, 211A Borowska Street, 50-556 Wrocław, Poland
- Correspondence: (H.M.); (A.R.); Tel.: +48-71-78-40-347 (H.M. & A.R.); Fax: +48-71-78-40-341 (H.M. & A.R.)
| |
Collapse
|