1
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Gosavi AA, Nandgude TD, Mishra RK, Puri DB. Exploring the Potential of Artificial Intelligence as a Facilitating Tool for Formulation Development in Fluidized Bed Processor: a Comprehensive Review. AAPS PharmSciTech 2024; 25:111. [PMID: 38740666 DOI: 10.1208/s12249-024-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
This in-depth study looks into how artificial intelligence (AI) could be used to make formulation development easier in fluidized bed processes (FBP). FBP is complex and involves numerous variables, making optimization challenging. Various AI techniques have addressed this challenge, including machine learning, neural networks, genetic algorithms, and fuzzy logic. By integrating AI with experimental design, process modeling, and optimization strategies, intelligent systems for FBP can be developed. The advantages of AI in this context include improved process understanding, reduced time and cost, enhanced product quality, and robust formulation optimization. However, data availability, model interpretability, and regulatory compliance challenges must be addressed. Case studies demonstrate successful applications of AI in decision-making, process outcome prediction, and scale-up. AI can improve efficiency, quality, and cost-effectiveness in significant ways. Still, it is important to think carefully about data quality, how easy it is to understand, and how to follow the rules. Future research should focus on fully harnessing the potential of AI to advance formulation development in FBP.
Collapse
Affiliation(s)
- Aachal A Gosavi
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Tanaji D Nandgude
- Department of Pharmaceutics, JSPM University's School of Pharmaceutical Sciences, Wagholi, Pune, India
| | - Rakesh K Mishra
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
| | - Dhiraj B Puri
- Department of Mechanical Engineering, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Sancoale, Goa, India
| |
Collapse
|
4
|
Yadav P, Singh Y, Chauhan D, Yadav PK, Kedar AS, Tiwari AK, Shah AA, Gayen JR, Chourasia MK. Development and approval of novel injectables: enhancing therapeutic innovations. Expert Opin Drug Deliv 2024; 21:639-662. [PMID: 38703363 DOI: 10.1080/17425247.2024.2351987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Novel injectables possess applications in both local and systemic therapeutics delivery. The advancement in utilized materials for the construction of complex injectables has tremendously upgraded their safety and efficacy. AREAS COVERED This review focuses on various strategies to produce novel injectables, including oily dispersions, in situ forming implants, injectable suspensions, microspheres, liposomes, and antibody-drug conjugates. We herein present a detailed description of complex injectable technologies and their related drug formulations permitted for clinical use by the United States Food and Drug Administration (USFDA). The excipients used, their purpose and the challenges faced during manufacturing such formulations have been critically discussed. EXPERT OPINION Novel injectables can deliver therapeutic agents in a controlled way at the desired site. However, several challenges persist with respect to their genericization. Astronomical costs incurred by innovator companies during product development, complexity of the product itself, supply limitations with respect to raw materials, intricate manufacturing processes, patent evergreening, product life-cycle extensions, relatively few and protracted generic approvals contribute to the exorbitant prices and access crunch. Moreover, regulatory guidance are grossly underdeveloped and significant efforts have to be directed toward development of effective characterization techniques.
Collapse
Affiliation(s)
- Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuvraj Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Arai Y, Iwao Y, Muguruma Y, Yamamoto K, Ikeda Y. Efficient Drug Loading Method for Poorly Water-Soluble Drug into Bicelles through Passive Diffusion. Mol Pharm 2023; 20:5701-5713. [PMID: 37823379 PMCID: PMC10630946 DOI: 10.1021/acs.molpharmaceut.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The bicelle, a type of solid lipid nanoparticle, comprises phospholipids with varying alkyl chain lengths and possesses the ability to solubilize poorly water-soluble drugs. Bicelle preparation is complicated and time-consuming because conventional drug-loading methods in bicelles require multiple rounds of thermal cycling or co-grinding with drugs and lipids. In this study, we proposed a simple drug-loading method for bicelles that utilizes passive diffusion. Drug-unloaded bicelles were placed inside a dialysis device and incubated in a saturated solution of ketoconazole (KTZ), which is a model drug. KTZ was successfully loaded into bare bicelles over time with morphological changes, and the final encapsulated concentration was dependent on the lipid concentration of the bicelles. When polyethylene glycol (PEG) chains of two different lengths (PEG2K and 5K) were incorporated into bicelles, PEG2k and PEG5k bicelles mitigated the morphological changes and improved the encapsulation rate. This mitigation of morphological changes enhanced the encapsulated drug concentration. Specifically, PEG5k bicelles, which exhibited the greatest prevention of morphological changes, had a lower encapsulated concentration after 24 h than that of PEG2k bicelles, indicating that PEGylation with a longer PEG chain length improved the loading capacity but decreased the encapsulation rate owing to the presence of a hydration layer of PEG. Thus, PEG with a certain length is more suitable for passive loading. Moreover, loading factors, such as temperature and vehicles used in the encapsulation process, affected the encapsulation rate of the drug. Taken together, the passive loading method offers high throughput with minimal resources, making it a potentially valuable approach during early drug development phases.
Collapse
Affiliation(s)
- Yuta Arai
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yasunori Iwao
- Department
of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yoshio Muguruma
- Drug
Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yukihiro Ikeda
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| |
Collapse
|
6
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
7
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
8
|
Markowski A, Zaremba-Czogalla M, Jaromin A, Olczak E, Zygmunt A, Etezadi H, Boyd BJ, Gubernator J. Novel Liposomal Formulation of Baicalein for the Treatment of Pancreatic Ductal Adenocarcinoma: Design, Characterization, and Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010179. [PMID: 36678808 PMCID: PMC9865389 DOI: 10.3390/pharmaceutics15010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
- Correspondence: (A.M.); (A.J.)
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Fernandez-Fernandez A, Manchanda R, Kumari M. Lipid-engineered nanotherapeutics for cancer management. Front Pharmacol 2023; 14:1125093. [PMID: 37033603 PMCID: PMC10076603 DOI: 10.3389/fphar.2023.1125093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
- *Correspondence: Alicia Fernandez-Fernandez,
| | - Romila Manchanda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Manisha Kumari
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Gonzaga BCF, de Moraes NR, Gomes GW, Coutinho AL, Vale FL, E Sousa LJMP, Marreto L, de Castro Rodrigues D, de Azevedo Prata MC, Marchesini P, Lopes WDZ, Monteiro C. Combination of synthetic acaricides with (E)-cinnamaldehyde to control Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:191-207. [PMID: 36346558 DOI: 10.1007/s10493-022-00743-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
This work had the objectives to (1) evaluate the susceptibility of various Rhipicephalus microplus populations to commercial acaricides, and (2) select commercial acaricides (50-80% effective) and evaluate the effects of binary combinations of the phenylpropanoid (E)-cinnamaldehyde with selected commercial acaricides to control R. microplus under laboratory and field conditions. Using adult immersion tests with 116 populations and 14 commercial acaricides, products showing 50-80% effectiveness (percent control) with the lowest number of active ingredients were selected. Acaricides containing amitraz or chlorfenvinphos were tested in combination with (E)-cinnamaldehyde on a field population (strain CM). We found that (E)-cinnamaldehyde enhanced the activity of both commercial acaricides against R. microplus larvae; however, the enhancement was more accentuated when using amitraz. Experiments combining (E)-cinnamaldehyde + amitraz on unfed larvae and engorged females from another population (strain Gyn) were performed, verifying (E)-cinnamaldehyde enhanced the activity of amitraz. In the field experiment, the application of (E)-cinnamaldehyde appeared toxic to the tick hosts (cattle). We concluded that (E)-cinnamaldehyde enhanced the activity of amitraz against unfed larvae and engorged females of R. microplus; however, in the field test this phenylpropanoid caused intoxication in the cattle. Studies searching for new combinations of compounds from essential oils with amitraz deserve attention, as well as studies to develop formulations using amitraz + (E)-cinnamaldehyde that will be efficient and will not have toxic effects in cattle.
Collapse
Affiliation(s)
- Bruno César Ferreira Gonzaga
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil.
- Faculdade de Medicina, Universidade Federal de Goiás, Rua 235, s/n - Setor Leste Universitário, 74605-050, Goiânia, GO, Brasil.
| | - Nélio Roberto de Moraes
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
| | - Gabriel Webert Gomes
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia - Goiânia, 74690-900, Goiânia, GO, Brasil
| | - Ana Lúcia Coutinho
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
| | - Francisca Letícia Vale
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
| | - Lainny Jordana Martins Pereira E Sousa
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
| | - Laís Marreto
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal de Goiás, Rua 240, esq. com 5ª avenida - Setor Leste Universitário, 74605-220, Goiânia, GO, Brasil
| | - Daniel de Castro Rodrigues
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
- MSD Saúde Animal, Avenida Doutor Chucri Zaidan, 296, 9º Andar, 04583-110, São Paulo, SP, Brasil
| | | | - Paula Marchesini
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
| | - Welber Daniel Zanetti Lopes
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, R. 235, s/n.º - Setor Leste Universitário, 74690-900, Goiânia, GO, Brasil
| | - Caio Monteiro
- Programa de Pós-graduação em Ciência Animal, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, km 8, Campus Samambaia, 74690-900, Goiânia, GO, Brasil.
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, R. 235, s/n.º - Setor Leste Universitário, 74690-900, Goiânia, GO, Brasil.
| |
Collapse
|
11
|
Geonzon LC, Kobayashi M, Sugimoto T, Adachi Y. Study on the kinetics of adsorption of poly(ethylene oxide) onto a silica particle using optical tweezers and microfluidics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
DFT studies on the physicochemical properties of a new potential drug carrier containing cellobiose units and its complex with paracetamol. Struct Chem 2022. [DOI: 10.1007/s11224-022-01950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
14
|
Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion Based Nanostructures for Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.
Collapse
|