1
|
Fan M, Guo M, Chen G, Rakotondrabe TF, Muema FW, Hu G. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118356. [PMID: 38763372 DOI: 10.1016/j.jep.2024.118356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| |
Collapse
|
2
|
Corman HN, McNamara CW, Bakowski MA. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023; 11:2845. [PMID: 38137989 PMCID: PMC10745741 DOI: 10.3390/microorganisms11122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmaniasis is a group of vector-borne, parasitic diseases caused by over 20 species of the protozoan Leishmania spp. The three major disease classifications, cutaneous, visceral, and mucocutaneous, have a range of clinical manifestations from self-healing skin lesions to hepatosplenomegaly and mucosal membrane damage to fatality. As a neglected tropical disease, leishmaniasis represents a major international health challenge, with nearly 350 million people living at risk of infection a year. The current chemotherapeutics used to treat leishmaniasis have harsh side effects, prolonged and costly treatment regimens, as well as emerging drug resistance, and are predominantly used for the treatment of visceral leishmaniasis. There is an undeniable need for the identification and development of novel chemotherapeutics targeting cutaneous leishmaniasis (CL), largely ignored by concerted drug development efforts. CL is mostly non-lethal and the most common presentation of this disease, with nearly 1 million new cases reported annually. Recognizing this unaddressed need, substantial yet fragmented progress in early drug discovery efforts for CL has occurred in the past 15 years and was outlined in this review. However, further work needs to be carried out to advance early discovery candidates towards the clinic. Importantly, there is a paucity of investment in the translation and development of therapies for CL, limiting the emergence of viable solutions to deal with this serious and complex international health problem.
Collapse
Affiliation(s)
- Hannah N. Corman
- Calibr at Scripps Research, La Jolla, CA 92037, USA; (C.W.M.); (M.A.B.)
| | | | | |
Collapse
|
3
|
Bosch-Navarrete C, Pérez-Moreno G, Annang F, Diaz-Gonzalez R, García-Hernández R, Rocha H, Gamarro F, Cordón-Obras C, Navarro M, Rodriguez A, Genilloud O, Reyes F, Vicente F, Ruiz-Pérez LM, González-Pacanowska D. Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0011592. [PMID: 37713416 PMCID: PMC10529594 DOI: 10.1371/journal.pntd.0011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/27/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.
Collapse
Affiliation(s)
- Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Hedy Rocha
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Carlos Cordón-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ana Rodriguez
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| |
Collapse
|
4
|
Fróes YN, Araújo JGN, Gonçalves JRDS, de Oliveira MDJMG, Everton GO, Filho VEM, Silva MRC, Silva LDM, Silva LA, Neto LGL, de Oliveira RM, Torres MAO, da Silva LCN, Lopes AJO, Aliança ASDS, da Rocha CQ, Sousa JCDS. Chemical Characterization and Leishmanicidal Activity In Vitro and In Silico of Natural Products Obtained from Leaves of Vernonanthura brasiliana (L.) H. Rob (Asteraceae). Metabolites 2023; 13:285. [PMID: 36837904 PMCID: PMC9967733 DOI: 10.3390/metabo13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Vernonanthura brasiliana (L.) H. Rob is a medicinal plant used for the treatment of several infections. This study aimed to evaluate the antileishmanial activity of V. brasiliana leaves using in vitro and in silico approaches. The chemical composition of V. brasiliana leaf extract was determined through liquid chromatography-mass spectrometry (LC-MS). The inhibitory activity against Leishmania amazonensis promastigote was evaluated by the MTT method. In silico analysis was performed using Lanosterol 14alpha-demethylase (CYP51) as the target. The toxicity analysis was performed in RAW 264.7 cells and Tenebrio molitor larvae. LC-MS revealed the presence of 14 compounds in V. brasiliana crude extract, including flavonoids, flavones, sesquiterpene lactones, and quinic acids. Eriodictol (ΔGbind = -9.0), luteolin (ΔGbind = -8.7), and apigenin (ΔGbind = -8.6) obtained greater strength of molecular interaction with lanosterol demethylase in the molecular docking study. The hexane fraction of V. brasiliana showed the best leishmanicidal activity against L. amazonensis in vitro (IC50 12.44 ± 0.875 µg·mL-1) and low cytotoxicity in RAW 264.7 cells (CC50 314.89 µg·mL-1, SI = 25.30) and T. molitor larvae. However, the hexane fraction and Amphotericin-B had antagonistic interaction (FICI index ≥ 4.0). This study revealed that V. brasiliana and its metabolites are potential sources of lead compounds for drugs for leishmaniasis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Oliveira Everton
- Laboratory of Research and Application of Essential Oils, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Victor Elias Mouchrek Filho
- Laboratory of Research and Application of Essential Oils, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | | | - Lucilene Amorim Silva
- Immunophysiology Laboratory, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | | | | | | | | | | | - Cláudia Quintino da Rocha
- Natural Products Research Laboratory, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | |
Collapse
|