1
|
Chai XN, Ludwig FA, Müglitz A, Gong Y, Schaefer M, Regenthal R, Krügel U. A Pharmacokinetic and Metabolism Study of the TRPC6 Inhibitor SH045 in Mice by LC-MS/MS. Int J Mol Sci 2022; 23:ijms23073635. [PMID: 35408998 PMCID: PMC8998618 DOI: 10.3390/ijms23073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
TRPC6, the sixth member of the family of canonical transient receptor potential (TRP) channels, contributes to a variety of physiological processes and human pathologies. This study extends the knowledge on the newly developed TRPC6 blocker SH045 with respect to its main target organs beyond the description of plasma kinetics. According to the plasma concentration-time course in mice, SH045 is measurable up to 24 h after administration of 20 mg/kg BW (i.v.) and up to 6 h orally. The short plasma half-life and rather low oral bioavailability are contrasted by its reported high potency. Dosage limits were not worked out, but absence of safety concerns for 20 mg/kg BW supports further dose exploration. The disposition of SH045 is described. In particular, a high extravascular distribution, most prominent in lung, and a considerable renal elimination of SH045 were observed. SH045 is a substrate of CYP3A4 and CYP2A6. Hydroxylated and glucuronidated metabolites were identified under optimized LC-MS/MS conditions. The results guide a reasonable selection of dose and application route of SH045 for target-directed preclinical studies in vivo with one of the rare high potent and subtype-selective TRPC6 inhibitors available.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany;
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Yuanyuan Gong
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (Y.G.); (M.S.)
- Correspondence:
| |
Collapse
|
2
|
Zheng Z, Tsvetkov D, Bartolomaeus TUP, Erdogan C, Krügel U, Schleifenbaum J, Schaefer M, Nürnberg B, Chai X, Ludwig FA, N'diaye G, Köhler MB, Wu K, Gollasch M, Markó L. Role of TRPC6 in kidney damage after acute ischemic kidney injury. Sci Rep 2022; 12:3038. [PMID: 35194063 PMCID: PMC8864023 DOI: 10.1038/s41598-022-06703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential channel subfamily C, member 6 (TRPC6), a non-selective cation channel that controls influx of Ca2+ and other monovalent cations into cells, is widely expressed in the kidney. TRPC6 gene variations have been linked to chronic kidney disease but its role in acute kidney injury (AKI) is unknown. Here we aimed to investigate the putative role of TRPC6 channels in AKI. We used Trpc6-/- mice and pharmacological blockade (SH045 and BI-749327), to evaluate short-term AKI outcomes. Here, we demonstrate that neither Trpc6 deficiency nor pharmacological inhibition of TRPC6 influences the short-term outcomes of AKI. Serum markers, renal expression of epithelial damage markers, tubular injury, and renal inflammatory response assessed by the histological analysis were similar in wild-type mice compared to Trpc6-/- mice as well as in vehicle-treated versus SH045- or BI-749327-treated mice. In addition, we also found no effect of TRPC6 modulation on renal arterial myogenic tone by using blockers to perfuse isolated kidneys. Therefore, we conclude that TRPC6 does not play a role in the acute phase of AKI. Our results may have clinical implications for safety and health of humans with TRPC6 gene variations, with respect to mutated TRPC6 channels in the response of the kidney to acute ischemic stimuli.
Collapse
Affiliation(s)
- Zhihuang Zheng
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dmitry Tsvetkov
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Theda Ulrike Patricia Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cem Erdogan
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Xiaoning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Gabriele N'diaye
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - May-Britt Köhler
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kaiyin Wu
- Department of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Gollasch
- Department of Nephrology/Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany.
| | - Lajos Markó
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Sharipov A, Boboev Z, Fazliev S, Gulyamov S, Yunuskhodjayev A, Razzokov J. Development of an Improved Method for the Determination of Iodine/β-Cyclodextrin by Means of HPLC-UV: Validation and the Thyroid-Stimulating Activity Revealed by In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13070955. [PMID: 34201915 PMCID: PMC8309194 DOI: 10.3390/pharmaceutics13070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Iodine, being an intrinsic part of thyroid hormones, is a vital microelement required for normal growth and development, particularly in children. Inadequate daily intake of iodine causes iodine deficiency, which is responsible for several health disorders, such as cretinism and goiters. Therefore, the development of new drugs and/or food supplements for iodine deficiency is crucial. We synthesized an iodine/β-cyclodextrin complex based on a host–guest model, and in this paper, we outline the development of a new quantitative analysis method. We suggest a robust and reliable high-performance liquid chromatography method to determine the total amount of iodine species in the complex. Moreover, we performed validation of our method. The results of validation presented here show the reliability, accuracy and high precision of the method. Furthermore, for the first time, we show results of in vivo studies for the thyroid-stimulating activity of the iodine/β-cyclodextrin complex. Our findings indicate that the thyroid-stimulating activity of iodine/β-cyclodextrin is comparable to that of potassium iodide, which is the main active pharmaceutical substance of conventional drugs for iodine deficiency.
Collapse
Affiliation(s)
- Avez Sharipov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (Z.B.); (S.G.)
| | - Zufar Boboev
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (Z.B.); (S.G.)
- Medical Devices and Medical Equipment, State Centre of Expertize and Standardization of Medicines, Tashkent 100002, Uzbekistan
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Shokhid Gulyamov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (Z.B.); (S.G.)
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, OSONG-Eup, Heungdeok-gu, Cheongju City 28160, Chungbuk, Korea
| | | | - Jamoliddin Razzokov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (Z.B.); (S.G.)
- Department of Physics and Chemistry, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- College of Engineering, Akfa University, Kichik Halqa Yuli Street 17, Tashkent 100095, Uzbekistan
- Correspondence:
| |
Collapse
|